
RuleXAI
Release v1.0.0

Macha Dawid

Jul 08, 2022

CONTENTS:

1 Installation 3

Index 65

i

ii

RuleXAI, Release v1.0.0

Welcome to RuleXAI’s documentation!

RuleXAI is a rule-based aproach to explain the output of any machine learning model. It is suitable for classification,
regression and survival tasks. Theoretical basis of the rule analysis methods implemented in the RuleXAI package can
be found in Theoretical basis section.

CONTENTS: 1

RuleXAI, Release v1.0.0

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

RuleXAI can be installed from PyPI:

pip install rulexai

1.1 Theoretical basis

Click here to view document describing theoretical basis of the rule analysis methods implemented in the RuleXAI
package

1.2 Code documentation

class rulexai.explainer.RuleExplainer(model, X: DataFrame, y: Union[DataFrame, Series], type: str =
'classification')

Parameters

• model (Model = Union[RuleClassifier, RuleRegressor,
SurvivalRules, CN2UnorderedClassifier, CN2SDUnorderedClassifier,
DecisionTreeClassifier, DecisionTreeRegressor, SurvivalTree,
List[str]]) –

Model to be analyzed. RuleXai supports the following Rule models:

– RuleKit(https://adaa-polsl.github.io/RuleKit-python/): RuleClassifier, RuleRegressor,
SurvivalRules

– Orange (https://orangedatamining.com/): CN2UnorderedClassifier,
CN2SDUnorderedClassifier

It can also extract rules from decision trees:

– scikit-learn (https://scikit-learn.org/stable/): DecisionTreeClassifier, DecisionTreeRe-
gressor

– scikit-survival (https://scikit-survival.readthedocs.io/en/stable/): SurvivalTree

Or you can provide a list of rules as:

– classification:
IF attribute1 = (-inf, value) AND . . . AND attribute2 = <value1, value2) THEN
label_atrribute = {class_name}

3

https://pypi.org/project/rulexai/
https://adaa-polsl.github.io/RuleKit-python/
https://orangedatamining.com/
https://scikit-learn.org/stable/
https://scikit-survival.readthedocs.io/en/stable/

RuleXAI, Release v1.0.0

– regression:
IF attribute1 = (-inf, value) AND . . . AND attribute2 = <value1, value2) THEN
target_attribute = {value}

– survival:
IF attribute1 = (-inf, value) AND . . . AND attribute2 = <value1, value2) THEN
survival_status_attribute = {survival_status}

• X (pd.DataFrame) – The training dataset used during provided model training

• y (Union[pd.DataFrame, pd.Series]) – The target values (class labels, real number,
survival status) used during provided model training

• type (str = None) –

The type of problem that the provided model solves. You can choose between:

– ”classification”

– ”regression”

– ”survival”

default: “classification”

condition_importances_

Computed conditions importances

Type
pd.DataFrame

feature_importances_

Feature importances computed base on conditions importances

Type
pd.DataFrame

explain(measure: str = 'C2', basic_conditions: bool = False)
Compute conditions importances. The importances of a conditions are computed base on:

Marek Sikora: Redefinition of Decision Rules Based on the Importance of Elementary Conditions Evalu-
ation. Fundam. Informaticae 123(2): 171-197 (2013)

https://dblp.org/rec/journals/fuin/Sikora13.html

Parameters

• measure (str) – Specifies the measure that is used to evaluate the quality of the rules.
Possible measures for classification and regression problem are: C2, Lift, Correlation.
Default: C2. It is not possible to select a measure for the survival problem, the Lo-
gRank test is used by default

• basic_conditions (bool) – Specifies whether to evaluate the conditions contained
in the input rules, or to break the conditions in the rules into base conditions so that
individual conditions do not overlap

Returns
self – Fitted explainer with calculated conditions

Return type
Explainer

4 Chapter 1. Installation

https://dblp.org/rec/journals/fuin/Sikora13.html

RuleXAI, Release v1.0.0

fit_transform(X: DataFrame, selector=None, y=None, POS=None)→ DataFrame
Creates a dataset based on given dataset in which the examples, instead of being described by the original
attributes, will be described with the specified conditions - it will be a set with binary attributes determining
whether a given example meets a given condition. It can be considered as kind of dummification. Thanks
to this function you can discretize data and get rid of missing values. It can be used as prestep for others
algorithms.

Parameters

• X (pd.DataFrame) – The input samples from which you want to create binary dataset.
Should have the same columns and columns order as X specified when creating Ex-
plainer

• selector (string/float) – Specifies on what basis to select the conditions from the
rules that will be included as attributes in the transformed set. If None all conditions
will be included in the transformed set. If number 0-1 percent of the most important
conditions will be selected based on condition importance ranking. If “reduct” the
reduct of the conditions set will be selected. Preferably, the option with the percentage
of most important conditions will be selected.

• y (Union[pd.DataFrame, pd.Series]) – Only if selector = “reduct”.The target
values for input sample, used in the determination of the reduct

• POS (float) – Only if selector = “reduct”.Target reduct POS

Returns
X_transformed – Transformed dataset

Return type
pd.DataFrame

get_rules()

Return rules from model

Returns
rules – Rules from model

Return type
List[str]

get_rules_covering_example(x: DataFrame, y: Union[DataFrame, Series])→ List[str]
Return rules that covers the given example

Parameters

• x (pd.DataFrame) – The input sample.

• y (Union[pd.DataFrame, pd.Series]) – The target values for input sample.

Returns
rules – Rules that covers the given example

Return type
List[str]

get_rules_with_basic_conditions()

Return rules from model with conditions broken down into base conditions so that individual conditions
do not overlap

Returns
rules – Rules from the model containing the base conditions

1.2. Code documentation 5

RuleXAI, Release v1.0.0

Return type
List[str]

local_explainability(x: DataFrame, y: Union[DataFrame, Series], plot: bool = False)
Displays information about the local explanation of the example: the rules that cover the given example
and the importance of the conditions contained in these rules

Parameters

• x (pd.DataFrame) – The input sample.

• y (Union[pd.DataFrame, pd.Series]) – The target values for input sample.

• plot (bool) – If True the importance of the conditions will also be shown in the chart.
Default: False

plot_importances(importances: DataFrame)
Plot importances :param importances: Feature/Condition importances to plot. :type importances:
pd.DataFrame

transform(X: DataFrame)→ DataFrame
Creates a dataset based on given dataset in which the examples, instead of being described by the original
attributes, will be described with the specified conditions - it will be a set with binary attributes determining
whether a given example meets a given condition. It can be considered as kind of dummification. Thanks
to this function you can discretize data and get rid of missing values. It can be used as prestep for others
algorithms.

Parameters
X (pd.DataFrame) – The input samples from which you want to create binary dataset.
Should have the same columns and columns order as X given in fit_transform

Returns
X_transformed – Transformed dataset

Return type
pd.DataFrame

class rulexai.explainer.Explainer(X: DataFrame, model_predictions: Union[DataFrame, Series], type: str
= 'classification')

Parameters

• X (pd.DataFrame) – The training dataset used during provided model training

• model_predictions (Union[pd.DataFrame, pd.Series]) – The training dataset
used during provided model training

• type (str) –

The type of problem that the provided model solves. You can choose between:

– ”classification”

– ”regression”

default: “classification”

condition_importances_

Computed conditions importances on given dataset

Type
pd.DataFrame

6 Chapter 1. Installation

RuleXAI, Release v1.0.0

feature_importances_

Feature importances computed base on conditions importances

Type
pd.DataFrame

explain(measure: str = 'C2', basic_conditions: bool = False, X_org=None)
Compute conditions importances. The importances of a conditions are computed base on:

Marek Sikora: Redefinition of Decision Rules Based on the Importance of Elementary Conditions Evalu-
ation. Fundam. Informaticae 123(2): 171-197 (2013)

https://dblp.org/rec/journals/fuin/Sikora13.html

Parameters

• measure (str) – Specifies the measure that is used to evaluate the quality of the rules.
Possible measures for classification and regression problem are: C2, Lift, Correlation.
Default: C2. It is not possible to select a measure for the survival problem, the Lo-
gRank test is used by default

• basic_conditions (bool) – Specifies whether to evaluate the conditions contained
in the input rules, or to break the conditions in the rules into base conditions so that
individual conditions do not overlap

• X_org – The dataset on which the rule-based model should be built. It can be the set
on which the black-box model was learned or this set before preprocessing (imputation
of missing values, dummification, scaling), because such a set can be handled by the
rule model

Returns
self – Fitted explainer with calculated conditions

Return type
Explainer

fit_transform(X: DataFrame, selector=None, y=None, POS=None)→ DataFrame
Creates a dataset based on given dataset in which the examples, instead of being described by the original
attributes, will be described with the specified conditions - it will be a set with binary attributes determining
whether a given example meets a given condition. It can be considered as kind of dummification. Thanks
to this function you can discretize data and get rid of missing values. It can be used as prestep for others
algorithms.

Parameters

• X (pd.DataFrame) – The input samples from which you want to create binary dataset.
Should have the same columns and columns order as X specified when creating Ex-
plainer

• selector (string/float) – Specifies on what basis to select the conditions from the
rules that will be included as attributes in the transformed set. If None all conditions
will be included in the transformed set. If number 0-1 percent of the most important
conditions will be selected based on condition importance ranking. If “reduct” the
reduct of the conditions set will be selected. Preferably, the option with the percentage
of most important conditions will be selected.

• y (Union[pd.DataFrame, pd.Series]) – Only if selector = “reduct”.The target
values for input sample, used in the determination of the reduct

• POS (float) – Only if selector = “reduct”.Target reduct POS

1.2. Code documentation 7

https://dblp.org/rec/journals/fuin/Sikora13.html

RuleXAI, Release v1.0.0

Returns
X_transformed – Transformed dataset

Return type
pd.DataFrame

get_rules()

Return rules from model

Returns
rules – Rules from model

Return type
List[str]

get_rules_covering_example(x: DataFrame, y: Union[DataFrame, Series])→ List[str]
Return rules that covers the given example

Parameters

• x (pd.DataFrame) – The input sample.

• y (Union[pd.DataFrame, pd.Series]) – The target values for input sample.

Returns
rules – Rules that covers the given example

Return type
List[str]

get_rules_with_basic_conditions()

Return rules from model with conditions broken down into base conditions so that individual conditions
do not overlap

Returns
rules – Rules from the model containing the base conditions

Return type
List[str]

local_explainability(x: DataFrame, y: Union[DataFrame, Series], plot: bool = False)
Displays information about the local explanation of the example: the rules that cover the given example
and the importance of the conditions contained in these rules

Parameters

• x (pd.DataFrame) – The input sample.

• y (Union[pd.DataFrame, pd.Series]) – The target values for input sample.

• plot (bool) – If True the importance of the conditions will also be shown in the chart.
Default: False

plot_importances(importances: DataFrame)
Plot importances :param importances: Feature/Condition importances to plot. :type importances:
pd.DataFrame

transform(X: DataFrame)→ DataFrame
Creates a dataset based on given dataset in which the examples, instead of being described by the original
attributes, will be described with the specified conditions - it will be a set with binary attributes determining
whether a given example meets a given condition. It can be considered as kind of dummification. Thanks
to this function you can discretize data and get rid of missing values. It can be used as prestep for others
algorithms.

8 Chapter 1. Installation

RuleXAI, Release v1.0.0

Parameters
X (pd.DataFrame) – The input samples from which you want to create binary dataset.
Should have the same columns and columns order as X given in fit_transform

Returns
X_transformed – Transformed dataset

Return type
pd.DataFrame

1.3 Tutorials

1.3.1 RuleXAI

In this notebook, the data from https://www.kaggle.com/c/titanic is analysed to show the advantages and possibilities
of using the RuleXAI library for in-depth analysis of the dataset. It is a popular set, often used in various types of
examples, therefore it was decided to use it in this analysis.

Overview

I. Initial data analysis and preprocesing
II. Use of a decision tree from sklearn
III. Analysis of the decision tree model from the previous point with RuleXAI
IV. Using the RuleKit library - a versatile tool for rule learning - to generate rule
V. Analysis with RuleXAI of rules derived with RuleKit
VI. Summary

I. Initial data analysis and preprocesing

1. Data load

The data used in this analysis comes from the kaggle competition (https://www.kaggle.com/c/titanic). Two datasets
were published as part of this competition:
- training set (train.csv)
- test set (test.csv)

According to the competition rules: “The training set should be used to build your machine learning models. For the
training set, we provide the outcome (also known as the “ground truth”) for each passenger. Your model will be based
on “features” like passengers’ gender and class. You can also use feature engineering to create new features. The test
set should be used to see how well your model performs on unseen data. For the test set, we do not provide the ground
truth for each passenger. It is your job to predict these outcomes. For each passenger in the test set, use the model you
trained to predict whether or not they survived the sinking of the Titanic.”

As the purpose of this analysis is to present the RuleXAI library not to take part in the competition, it was decided to
use only the data contained in the training set in the further analysis. Therefore, the data from the train.csv file can be
split into training and test data, so that it will be possible to evaluate the results obtained without participating in the
competition.

[1]: import pandas as pd

1.3. Tutorials 9

https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/titanic

RuleXAI, Release v1.0.0

[4]: dataset_path = "./data/titanic_kaggle.csv"
data = pd.read_csv(dataset_path)
data.head(5)

[4]: PassengerId Survived Pclass \
0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
4 5 0 3

Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
4 Allen, Mr. William Henry male 35.0 0

Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
4 0 373450 8.0500 NaN S

2. Dataset overwiev

[3]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Name 891 non-null object
4 Sex 891 non-null object
5 Age 714 non-null float64
6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

[4]: data[['PassengerId', 'Survived', 'Pclass']
] = data[['PassengerId', 'Survived', 'Pclass']].astype(str)

10 Chapter 1. Installation

RuleXAI, Release v1.0.0

[5]: numeric_data = data[['Age', 'SibSp', 'Parch', 'Fare']]
caterogical_data = data[['PassengerId', 'Survived', 'Pclass',

'Sex', 'Ticket', 'Cabin', 'Embarked']]

[6]: numeric_data.describe()

[6]: Age SibSp Parch Fare
count 714.000000 891.000000 891.000000 891.000000
mean 29.699118 0.523008 0.381594 32.204208
std 14.526497 1.102743 0.806057 49.693429
min 0.420000 0.000000 0.000000 0.000000
25% 20.125000 0.000000 0.000000 7.910400
50% 28.000000 0.000000 0.000000 14.454200
75% 38.000000 1.000000 0.000000 31.000000
max 80.000000 8.000000 6.000000 512.329200

[7]: caterogical_data.describe()

[7]: PassengerId Survived Pclass Sex Ticket Cabin Embarked
count 891 891 891 891 891 204 889
unique 891 2 3 2 681 147 3
top 675 0 3 male CA. 2343 C23 C25 C27 S
freq 1 549 491 577 7 4 644

3. Data preprocessing

In the first stage of data preprocessing it was decided to only remove the columns for PassengerId, Passenger Name,
Ticket type and Cabin. Removing the PassengerId and Passenger Name columns is self-explanatory - in no way does
PassengerId or Passenger Name have any bearing on whether a person survived. It would only be possible to derive
passenger status from passenger name, as there are markings such as ‘Mr.’, ‘Mrs.’, ‘Miss.’, ‘Master.’. In case of tickets,
the designations for most tickets vary - 681 unique values out of 891 occurrences. One could extract some information
from the tickets from their designations (e.g., whether they begin with a number or a letter). However, historical data
would need to be consulted to find out what the ticket designations mean. In the case of cabin designations, as many as
697 values are missing - for this reason it was decided to remove the entire column, as it carries too little information.

Of course, the preliminary data analysis and preprocessing stage itself could have been even more extensive - exploring
the relationships between features, examining the impact of individual features, plotting graphs to better understand
the data. However, the main purpose of this notebook is not to analyse a given set of data in detail, but only to show
the possibilities of using the RuleXAI library. For this reason, some simplifications in the analysis have been decided.

[8]: data.drop(["PassengerId", "Name", "Ticket", "Cabin"], axis=1, inplace=True)
data.reset_index(inplace=True, drop=True)
data.head(5)

[8]: Survived Pclass Sex Age SibSp Parch Fare Embarked
0 0 3 male 22.0 1 0 7.2500 S
1 1 1 female 38.0 1 0 71.2833 C
2 1 3 female 26.0 0 0 7.9250 S
3 1 1 female 35.0 1 0 53.1000 S
4 0 3 male 35.0 0 0 8.0500 S

1.3. Tutorials 11

RuleXAI, Release v1.0.0

II. Use of a decision tree from sklearn

In the first stage it was decided to use the decision tree for classification, which is available in the sklearn package and
which is also supported by the RuleXAI library.

1. Data preparation for decision tree

Since the decision tree algorithm does not support missing values and only operates on numeric data, it was necessary
to fill in missing values (for numeric data the median was used, and for categorical data the mode, which is the most
frequent value) and dummify. The numerical data could also be rescaled - however, it was decided not to do so to
facilitate further analysis, which will be seen later.

[9]: data.Age = data.Age.fillna(data.Age.median())
data.Embarked = data.Embarked.fillna(data.Embarked.mode())

data_dummies = pd.get_dummies(data.drop(["Survived"], axis=1))
data_dummies_scaled = data_dummies.copy()

X = data_dummies_scaled
y = data.Survived

2. Data split for training and test datasets

[10]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42,)

3. Building and testing the model

A simple decision tree model with default parameters was used, since the main goal is not to get the best possible
results, but only to show the use of the RuleXAI library.

[11]: from sklearn.model_selection import cross_val_score
from sklearn.metrics import balanced_accuracy_score
from sklearn.tree import DecisionTreeClassifier

dt = DecisionTreeClassifier(random_state=1, max_depth=5)
cv = cross_val_score(dt, X_train, y_train, cv=5, scoring = "balanced_accuracy")
print(cv)
print(cv.mean())

[0.69121658 0.82526142 0.73472757 0.72491639 0.8157748]
0.7583793541088122

[12]: dt.fit(X_train, y_train)

[12]: DecisionTreeClassifier(max_depth=5, random_state=1)

12 Chapter 1. Installation

RuleXAI, Release v1.0.0

[13]: balanced_accuracy_score(y_test, dt.predict(X_test))

[13]: 0.7807425259654559

4. Determination of the feature importance from the decision tree in the sklearn package

[14]: features_importances = pd.DataFrame(columns=["Feature", "Importance"])
features_importances.Feature = X_train.columns
features_importances.Importance = dt.feature_importances_
features_importances = features_importances.sort_values(

by=["Importance"], ascending=False)
features_importances.reset_index(inplace=True, drop=True)

features_importances

[14]: Feature Importance
0 Sex_female 0.516327
1 Pclass_3 0.158578
2 Age 0.120043
3 Fare 0.119806
4 SibSp 0.041863
5 Embarked_C 0.028040
6 Pclass_1 0.006695
7 Pclass_2 0.006262
8 Parch 0.002385
9 Sex_male 0.000000
10 Embarked_Q 0.000000
11 Embarked_S 0.000000

Looking at the importance of the features obtained directly from the decision tree in sklearn, it can be seen that the
feature that most distinguished whether someone survived or not was the gender of the person, and more precisely
whether the person was a woman or not. However, there is no information on whether the fact that a person was a
woman caused survival or death. Knowing the context of the data, it can be concluded that men were gentlemen and
they let women go first, therefore it can be concluded that if the person was a woman, she had a better chance of survival.
The second most important feature that distinguished between survivors and non-survivors was whether the person was
traveling in 3rd class. Assuming that the women were saved first, the next selection criterion would be in which class
someone traveled. If it was 3rd class, it can be concluded that he was saved last, so there is a high probability that
he did not survive. Another feature distinguishing whether or not a person survived was the age of the person. It can
be assumed that children and the elderly people were saved from people in their prime, who had a better chance of
surviving in difficult conditions. Another important feature was the amount of fare - it can be concluded that people
who paid more for the ticket, traveled in a better class and in better conditions. This coincides with the fact that the
survivors and the non-survivors also distinguished very well whether they were traveling in 3rd class or not.

We can see that the obtained validities of the features coincide with what can be inferred from the historical data and
the context of the event. However, without the context, it would be difficult to conclude which feature indicates which
class - on the basis of the presented importance of features, one could only obtain information about the separation of
classes, and not about which class a given feature indicates.

1.3. Tutorials 13

RuleXAI, Release v1.0.0

5. Model generation based on top 50% of features

[15]: features_number = 0.5 * features_importances.shape[0]

[16]: X_train_sklearn_features = X_train[features_importances.loc[0:features_number-1, "Feature
→˓"]]
X_test_sklearn_features = X_test[features_importances.loc[0:features_number-1, "Feature
→˓"]]

X_train_sklearn_features

[16]: Sex_female Pclass_3 Age Fare SibSp Embarked_C
445 0 0 4.0 81.8583 0 0
650 0 1 28.0 7.8958 0 0
172 1 1 1.0 11.1333 1 0
450 0 0 36.0 27.7500 1 0
314 0 0 43.0 26.2500 1 0
..
106 1 1 21.0 7.6500 0 0
270 0 0 28.0 31.0000 0 0
860 0 1 41.0 14.1083 2 0
435 1 0 14.0 120.0000 1 0
102 0 0 21.0 77.2875 0 0

[623 rows x 6 columns]

[20]: dt_sklearn_features = DecisionTreeClassifier(random_state=1, max_depth=5)
cv = cross_val_score(dt_sklearn_features,

X_train_sklearn_features, y_train, cv=5, scoring = "balanced_
→˓accuracy")
print(cv)
print(cv.mean())

[0.74440807 0.83791965 0.73018712 0.7703456 0.79598662]
0.7757694124203101

[21]: dt_sklearn_features.fit(X_train_sklearn_features, y_train)

[21]: DecisionTreeClassifier(max_depth=5, random_state=1)

[22]: balanced_accuracy_score(y_test, dt_sklearn_features.predict(X_test_sklearn_features))

[22]: 0.7839272393412521

Looking at the results obtained on the training set (in cross-validation) and the test set, one can see that selecting only
the most important features according to the ranking obtained with sklearn improved the results obtained. Indeed, the
selected features have the greatest impact in distinguishing whether a person survived or not.

14 Chapter 1. Installation

RuleXAI, Release v1.0.0

III. Analysis of the decision tree model from the previous point with RuleXAI

1. RuleXAI initialisation

[23]: from rulexai.explainer import RuleExplainer
explainer = RuleExplainer(model=dt, X=X_train, y=y_train, type="classification")
explainer.explain()

[23]: <rulexai.explainer.RuleExplainer at 0x29d6719f8b0>

2. Presentation of the rules derived from the decision tree

[24]: rules = explainer.get_rules()
for rule in rules:

print(rule)

IF Sex_female = (-inf, 0.5> AND Age = (6.5, 77.0> AND Fare = (-inf, 52.277099609375> AND␣
→˓Pclass_1 = (-inf, 0.5> THEN Survived = {0}
IF Sex_female = (0.5, inf) AND Pclass_3 = (-inf, 0.5> AND Age = (2.5, 49.5> AND Fare = (-
→˓inf, 149.035400390625> THEN Survived = {1}
IF Sex_female = (0.5, inf) AND Pclass_3 = (0.5, inf) AND Fare = (-inf, 15.
→˓372900009155273> AND Age = (-inf, 36.5> THEN Survived = {1}
IF Sex_female = (-inf, 0.5> AND Age = (6.5, 77.0> AND Fare = (-inf, 52.277099609375> AND␣
→˓Pclass_1 = (0.5, inf) THEN Survived = {0}
IF Sex_female = (0.5, inf) AND Pclass_3 = (0.5, inf) AND Fare = (15.372900009155273, 23.
→˓350000381469727> AND Age = (-inf, 36.5> THEN Survived = {1}
IF Sex_female = (-inf, 0.5> AND Age = (6.5, inf) AND Fare = (59.08749961853027, inf) AND␣
→˓Embarked_C = (-inf, 0.5> THEN Survived = {0}
IF Sex_female = (0.5, inf) AND Pclass_3 = (0.5, inf) AND Fare = (23.350000381469727,␣
→˓inf) AND Age = (7.0, inf) THEN Survived = {0}
IF Sex_female = (-inf, 0.5> AND Age = (6.5, inf) AND Fare = (59.08749961853027, inf) AND␣
→˓Embarked_C = (0.5, inf) THEN Survived = {1}
IF Sex_female = (-inf, 0.5> AND Age = (-inf, 6.5> AND SibSp = (-inf, 3.0> THEN Survived␣
→˓= {1}
IF Sex_female = (0.5, inf) AND Pclass_3 = (-inf, 0.5> AND Age = (49.5, inf) AND Fare = (-
→˓inf, 149.035400390625> THEN Survived = {1}
IF Sex_female = (0.5, inf) AND Pclass_3 = (-inf, 0.5> AND Age = (2.5, inf) AND Fare =␣
→˓(152.5062484741211, inf) THEN Survived = {1}
IF Sex_female = (-inf, 0.5> AND Age = (22.0, inf) AND Fare = (52.277099609375, 59.
→˓08749961853027> THEN Survived = {1}
IF Sex_female = (0.5, inf) AND Pclass_3 = (0.5, inf) AND Fare = (-inf, 23.
→˓350000381469727> AND Age = (36.5, inf) THEN Survived = {0}
IF Sex_female = (-inf, 0.5> AND Age = (-inf, 6.5> AND SibSp = (3.0, inf) AND Parch = (-
→˓inf, 1.5> THEN Survived = {0}
IF Sex_female = (0.5, inf) AND Pclass_3 = (0.5, inf) AND Fare = (23.350000381469727,␣
→˓inf) AND Age = (-inf, 3.5> THEN Survived = {0}
IF Sex_female = (-inf, 0.5> AND Age = (-inf, 6.5> AND SibSp = (3.0, inf) AND Parch = (1.
→˓5, inf) AND Fare = (31.331250190734863, inf) THEN Survived = {0}
IF Sex_female = (0.5, inf) AND Pclass_3 = (-inf, 0.5> AND Age = (-inf, 2.5> AND Pclass_2␣
→˓= (0.5, inf) THEN Survived = {1}
IF Sex_female = (0.5, inf) AND Pclass_3 = (0.5, inf) AND Fare = (23.350000381469727,␣
→˓inf) AND Age = (3.5, 7.0> THEN Survived = {1}

(continues on next page)

1.3. Tutorials 15

RuleXAI, Release v1.0.0

(continued from previous page)

IF Sex_female = (0.5, inf) AND Pclass_3 = (-inf, 0.5> AND Age = (2.5, inf) AND Fare =␣
→˓(149.035400390625, 152.5062484741211> THEN Survived = {0}
IF Sex_female = (-inf, 0.5> AND Age = (6.5, 22.0> AND Fare = (52.277099609375, 59.
→˓08749961853027> THEN Survived = {0}
IF Sex_female = (-inf, 0.5> AND Age = (77.0, inf) AND Fare = (-inf, 52.277099609375>␣
→˓THEN Survived = {1}
IF Sex_female = (-inf, 0.5> AND Age = (-inf, 6.5> AND SibSp = (3.0, inf) AND Parch = (1.
→˓5, inf) AND Fare = (-inf, 31.331250190734863> THEN Survived = {0}
IF Sex_female = (0.5, inf) AND Pclass_3 = (-inf, 0.5> AND Age = (-inf, 2.5> AND Pclass_2␣
→˓= (-inf, 0.5> THEN Survived = {0}

3. Importance of features determined by RuleXAI

[25]: explainer.feature_importances_

[25]: 0 | attributes 0 | importances 1 | attributes 1 | importances
0 Pclass_3 0.895689 Sex_female 1.078293
1 Sex_female 0.844471 Age 0.973953
2 SibSp 0.683045 Fare 0.493457
3 Fare 0.584592 Pclass_3 0.140172
4 Age 0.396833 Pclass_2 0.126684
5 Pclass_2 0.186594 Embarked_C 0.11173
6 Embarked_C 0.101517 SibSp 0.089413
7 Parch -0.051929 - -
8 Pclass_1 -0.138521 - -

Contrary to the importance of the features returned by the decision tree from sklearn, RuleXAI examines the importance
of the conditions in the context of the class. In the case of this dataset, the importance of a feature tells us how much a
given feature of a person contributed to the assignment of that person to this class. Analysing the ranking of the feature
importance, it can be concluded that what most characterised the non-survivors was whether they traveled in grade 3 or
not. Second important feature that had impact on non-survival was the gender of the person, and more precisely whether
the person was a woman or not. We can also see that the number of siblings had an impact on survival - if someone had
many siblings, the parents probably were not able to ensure the safety of all their children. Looking at the survivors, it
can be seen that gender had the greatest impact on survival. We can also see that age had big impact on survival - we
can draw the conclusions that probably at the beginning, children and the elderly were rescued, because people in their
prime had a greater chance of surviving in difficult conditions. Next, whether someone survived depended on the fare
- richer people were saved earlier than poorer.

From the feature ranking obtained with RuleXAI, similar conclusions can be drawn as with the feature ranking obtained
with sklearn. The advantage of using RuleXAI, however, is that validity of the features is examined in the context of the
class. Thanks to this, even without knowing the context, it would be known which feature influenced the assignment
of a given class to a given object the most. An even more in-depth analysis can be performed using the ranking of
conditions from the RuleXAI library, as will be shown later in the report

16 Chapter 1. Installation

RuleXAI, Release v1.0.0

4. Model generation based on top 50% of features for each class from RuleXAI

[26]: import numpy as np

features_importances_rulexai = explainer.feature_importances_

percent = 50
importances_TOP = []
for j in range(0, features_importances_rulexai.shape[1] + 0, 2):

class_importances = (
features_importances_rulexai.iloc[:, j]
.replace("-", np.nan)
.dropna()

)
class_importances_TOP_number = np.round(

(percent / 100) * class_importances.shape[0]
)

if class_importances_TOP_number == 0:
class_importances_TOP_number = 1

class_importances_TOP = class_importances.loc[
0: class_importances_TOP_number - 1

]
importances_TOP.extend(list(class_importances_TOP))

importances_TOP_list = list(set(importances_TOP))

importances_TOP_list

[26]: ['Fare', 'Age', 'SibSp', 'Sex_female', 'Pclass_3']

[27]: X_train_rulexai_features = X_train[importances_TOP_list]
X_test_rulexai_features = X_test[importances_TOP_list]

X_train_rulexai_features.head(5)

[27]: Fare Age SibSp Sex_female Pclass_3
445 81.8583 4.0 0 0 0
650 7.8958 28.0 0 0 1
172 11.1333 1.0 1 1 1
450 27.7500 36.0 1 0 0
314 26.2500 43.0 1 0 0

[28]: dt_rulexai_features = DecisionTreeClassifier(random_state=1, max_depth=5)
cv = cross_val_score(dt_rulexai_features,

X_train_rulexai_features, y_train, cv=5, scoring = "balanced_
→˓accuracy")
print(cv)
print(cv.mean())

1.3. Tutorials 17

RuleXAI, Release v1.0.0

[0.74440807 0.83791965 0.72110622 0.79403567 0.78065775]
0.7756254727056493

[29]: dt_rulexai_features.fit(X_train_rulexai_features, y_train)

[29]: DecisionTreeClassifier(max_depth=5, random_state=1)

[30]: balanced_accuracy_score(y_test, dt_rulexai_features.predict(X_test_rulexai_features))

[30]: 0.8017157284673209

By selecting 50% of the most important features from the ranking obtained with RuleXAI, it can be seen that compared
to the basic set, the results obtained by the decision tree have improved. Comparing these results with the results
obtained for the set containing 50% of the most important features from the ranking determined with the use of sklearn,
we can see that the results also have improved.

5. Further analysis using RuleXAI

5.1 Rule condition importance

Below we present how the importance of the conditions from rules derived from a decision tree can be analysed.

[31]: explainer.condition_importances_

[31]: 0 | conditions_names 0 | importances \
0 Sex_female = (-inf, 0.5> 1.444185
1 Pclass_3 = (0.5, inf) 0.856801
2 SibSp = (3.0, inf) 0.683045
3 Fare = (149.035400390625, 152.5062484741211> 0.455265
4 Age = (6.5, 22.0> 0.335094
5 Fare = (23.350000381469727, inf) 0.246165
6 Age = (-inf, 2.5> 0.236955
7 Age = (36.5, inf) 0.204974
8 Pclass_2 = (-inf, 0.5> 0.186594
9 Fare = (-inf, 31.331250190734863> 0.119378
10 Fare = (-inf, 52.277099609375> 0.105219
11 Embarked_C = (-inf, 0.5> 0.101517
12 Age = (6.5, 77.0> 0.055288
13 Parch = (-inf, 1.5> 0.053057
14 Pclass_1 = (-inf, 0.5> 0.042272
15 Pclass_3 = (-inf, 0.5> 0.038888
16 Fare = (-inf, 23.350000381469727> 0.038706
17 Age = (7.0, inf) 0.032743
18 Age = (6.5, inf) 0.030661
19 Age = (2.5, inf) 0.005461
20 Age = (-inf, 3.5> -0.087280
21 Fare = (31.331250190734863, inf) -0.103671
22 Parch = (1.5, inf) -0.104986
23 Fare = (59.08749961853027, inf) -0.125345
24 Fare = (52.277099609375, 59.08749961853027> -0.151125
25 Pclass_1 = (0.5, inf) -0.180793
26 Age = (-inf, 6.5> -0.417063

(continues on next page)

18 Chapter 1. Installation

RuleXAI, Release v1.0.0

(continued from previous page)

27 Sex_female = (0.5, inf) -0.599715

1 | conditions_names 1 | importances
0 Sex_female = (0.5, inf) 1.378759
1 Age = (77.0, inf) 0.404701
2 Age = (-inf, 6.5> 0.339353
3 Fare = (52.277099609375, 59.08749961853027> 0.285962
4 Pclass_3 = (-inf, 0.5> 0.280239
5 Age = (3.5, 7.0> 0.254798
6 Pclass_2 = (0.5, inf) 0.126684
7 Fare = (59.08749961853027, inf) 0.120677
8 Embarked_C = (0.5, inf) 0.11173
9 SibSp = (-inf, 3.0> 0.089413
10 Fare = (15.372900009155273, 23.350000381469727> 0.084646
11 Fare = (152.5062484741211, inf) 0.039821
12 Fare = (23.350000381469727, inf) 0.033452
13 Age = (-inf, 2.5> 0.031559
14 Age = (22.0, inf) 0.011474
15 Age = (-inf, 36.5> 0.011118
16 Age = (2.5, inf) -0.003344
17 Age = (2.5, 49.5> -0.006889
18 Age = (6.5, inf) -0.008256
19 Fare = (-inf, 149.035400390625> -0.012183
20 Fare = (-inf, 52.277099609375> -0.027228
21 Fare = (-inf, 15.372900009155273> -0.031689
22 Age = (49.5, inf) -0.060562
23 Pclass_3 = (0.5, inf) -0.140068
24 Sex_female = (-inf, 0.5> -0.300466
25 - -
26 - -
27 - -

Looking at the importance of individual conditions, we can see that the most important condition for a person not
surviving is that the person was not a woman, that is, person was a man. On the other hand, the most important
condition for a person to survive is that the person was a woman. In this way, we have an explicit confirmation of the
hypothesis put forward on the basis of the data context during the analysis of the importance of the features. At this
point, note that for categorical variables such as Sex_female, where the feature can be 0 or 1, the rules taken from the
decision tree return the condition Sex_female = (-inf, 0.5> when the feature is 0 and Sex_female = (0.5, inf) when the
feature takes the value 1.

We also see that the second condition determing that the person did not survive is that they traveled in 3rd grade.
This also confirms the hypothesis put forward during the analysis of the feature importance. In the case of the feature
importance analysis, we only had information on whether survival was affected by the fact that the person was travelling
in 3rd grade. The ranking of conditions gives us an unambiguous confirmation of which decision is impacted by this
feature.

The situation is similar with the number of siblings. We can see that if a person had more than 3 siblings, it was
more likely that they were in the group of non-survivors. This confirms the hypothesis put forward earlier: with more
children, the parents were not able to ensure the safety of all their children.

On the other hand, when looking at the conditions for survivors, it can be seen that in addition to being a woman, the
following conditions rank high: Age = (77.0, inf), Age = (-inf, 6.5>. This confirms the hypothesis that children and the
elderly people were saved first.

1.3. Tutorials 19

RuleXAI, Release v1.0.0

5.2 Local explainability

It is often interesting and important to know on what criteria the model made its decision for a given example. In general,
thanks to the explanations obtained with XAI methods, the correctness of the model can be verified. Additionally, in
some applications of AI it is important that thanks to the use of XAI people affected by the model’s decision better
understand their situation and have more trust in the model.

This type of explanation is provided by RuleXAI. The explanations take the form of easy to understand and interpret
rules, based on which the model makes a decision for a given example, and the importance of the conditions contained
in them.

[32]: example_X = X_train.iloc[1, :]
example_Y = pd.DataFrame(y_train).iloc[1, :]

explainer.local_explainability(example_X, example_Y, plot = True)

Example:
Age 28.0
SibSp 0.0
Parch 0.0
Fare 7.8958
Pclass_1 0.0
Pclass_2 0.0
Pclass_3 1.0
Sex_female 0.0
Sex_male 1.0
Embarked_C 0.0
Embarked_Q 0.0
Embarked_S 1.0
Survived 0
Name: 650, dtype: object

Rules that covers this example:
IF Sex_female = (-inf, 0.5> AND Age = (6.5, 77.0> AND Fare = (-inf, 52.277099609375> AND␣
→˓Pclass_1 = (-inf, 0.5> THEN Survived = {0}

Importances of the conditions from rules covering the example
0 | conditions_names 0 | importances

0 Sex_female = (-inf, 0.5> 1.444185
1 Fare = (-inf, 52.277099609375> 0.105219
2 Age = (6.5, 77.0> 0.055288
3 Pclass_1 = (-inf, 0.5> 0.042272

20 Chapter 1. Installation

RuleXAI, Release v1.0.0

[32]: 0 | conditions_names 0 | importances
0 Sex_female = (-inf, 0.5> 1.444185
1 Fare = (-inf, 52.277099609375> 0.105219
2 Age = (6.5, 77.0> 0.055288
3 Pclass_1 = (-inf, 0.5> 0.042272

Looking at the explanation, we can see that the model classifies a person as a non-survivor based on the rule stating
that the person not survived because: was male, was beetwen (6.5, 77.0> years old, paid little for the fare and did not
travel in 1st class. The most important of these conditions was that this person was male.

5.3 Creation of a binary dataset

Another functionality provided by RuleXAI is the conversion of the input dataset into a set described by binary features
that correspond to specific conditions determined by the model. If for a given condition the example takes the value 0,
it means that it does not meet it. If, on the other hand, it takes 1, it means that it satisfies it. This dataset can be used
to train other ML models. A significant advantage of such a set is that it has no missing values and only has one type
of data (it can be considered as categorical or numerical). Thanks to this, it can be used with any of the available ML
models.

[33]: X_train_tranformed = explainer.fit_transform(X_train, selector=None)

X_train_tranformed.head(5)

[33]: Sex_female = (-inf, 0.5> Age = (6.5, 77.0> Fare = (-inf, 52.277099609375> \
0 1 0 0
1 1 1 1
2 0 0 1
3 1 1 1
4 1 1 1

Pclass_1 = (-inf, 0.5> Sex_female = (0.5, inf) Pclass_3 = (-inf, 0.5> \
0 0 0 1
1 1 0 0
2 1 1 0

(continues on next page)

1.3. Tutorials 21

RuleXAI, Release v1.0.0

(continued from previous page)

3 1 0 1
4 1 0 1

Age = (2.5, 49.5> Fare = (-inf, 149.035400390625> Pclass_3 = (0.5, inf) \
0 1 1 0
1 1 1 1
2 0 1 1
3 1 1 0
4 1 1 0

Fare = (-inf, 15.372900009155273> ... Parch = (1.5, inf) \
0 0 ... 1
1 1 ... 0
2 1 ... 0
3 0 ... 1
4 0 ... 0

Fare = (31.331250190734863, inf) Age = (-inf, 2.5> Pclass_2 = (0.5, inf) \
0 1 0 0
1 0 0 0
2 0 1 0
3 0 0 1
4 0 0 1

Age = (3.5, 7.0> Fare = (149.035400390625, 152.5062484741211> \
0 1 0
1 0 0
2 0 0
3 0 0
4 0 0

Age = (6.5, 22.0> Age = (77.0, inf) Fare = (-inf, 31.331250190734863> \
0 0 0 0
1 0 0 1
2 0 0 1
3 0 0 1
4 0 0 1

Pclass_2 = (-inf, 0.5>
0 1
1 1
2 1
3 0
4 0

[5 rows x 41 columns]

[37]: X_test_transformed = explainer.transform(X_test)

X_test_transformed.head(5)

22 Chapter 1. Installation

RuleXAI, Release v1.0.0

[37]: Sex_female = (-inf, 0.5> Age = (6.5, 77.0> Fare = (-inf, 52.277099609375> \
0 1 1 1
1 1 1 1
2 1 1 1
3 0 0 1
4 0 1 1

Pclass_1 = (-inf, 0.5> Sex_female = (0.5, inf) Pclass_3 = (-inf, 0.5> \
0 1 0 0
1 1 0 1
2 1 0 0
3 1 1 1
4 1 1 0

Age = (2.5, 49.5> Fare = (-inf, 149.035400390625> Pclass_3 = (0.5, inf) \
0 1 1 1
1 1 1 0
2 1 1 1
3 1 1 0
4 1 1 1

Fare = (-inf, 15.372900009155273> ... Parch = (1.5, inf) \
0 1 ... 0
1 1 ... 0
2 1 ... 0
3 0 ... 0
4 1 ... 0

Fare = (31.331250190734863, inf) Age = (-inf, 2.5> Pclass_2 = (0.5, inf) \
0 0 0 0
1 0 0 1
2 0 0 0
3 1 0 1
4 0 0 0

Age = (3.5, 7.0> Fare = (149.035400390625, 152.5062484741211> \
0 0 0
1 0 0
2 0 0
3 1 0
4 0 0

Age = (6.5, 22.0> Age = (77.0, inf) Fare = (-inf, 31.331250190734863> \
0 0 0 1
1 0 0 1
2 1 0 1
3 0 0 0
4 1 0 1

Pclass_2 = (-inf, 0.5>
0 1
1 0
2 1

(continues on next page)

1.3. Tutorials 23

RuleXAI, Release v1.0.0

(continued from previous page)

3 0
4 1

[5 rows x 41 columns]

[35]: dt_binary_dataset = DecisionTreeClassifier(random_state=1, max_depth=5)
cv = cross_val_score(dt_binary_dataset,

X_train_tranformed, y_train, cv=5, scoring = "balanced_accuracy")
print(cv)
print(cv.mean())

[0.76991271 0.83970831 0.74009356 0.7990524 0.84448161]
0.7986497169696036

[36]: dt_binary_dataset.fit(X_train_tranformed, y_train)

[36]: DecisionTreeClassifier(max_depth=5, random_state=1)

[38]: balanced_accuracy_score(y_test, dt_binary_dataset.predict(X_test_transformed))

[38]: 0.7807425259654559

Looking at the results obtained by the decision tree trained on the created binary set, we can see that it obtains very
similar (even slightly better) results than on the original dataset.

5.4 Creation of a binary dataset based on top conditions

RuleXAI allows you to create a binary dataset with a selected percentage of the most important conditions.

[39]: X_train_tranformed = explainer.fit_transform(X_train, selector=0.25)

X_train_tranformed.head(5)

[39]: SibSp = (3.0, inf) Fare = (52.277099609375, 59.08749961853027> \
0 0 0
1 0 0
2 0 0
3 0 0
4 0 0

Pclass_3 = (-inf, 0.5> Sex_female = (-inf, 0.5> Sex_female = (0.5, inf) \
0 1 1 0
1 0 1 0
2 0 0 1
3 1 1 0
4 1 1 0

Age = (3.5, 7.0> Fare = (149.035400390625, 152.5062484741211> \
0 1 0
1 0 0
2 0 0
3 0 0

(continues on next page)

24 Chapter 1. Installation

RuleXAI, Release v1.0.0

(continued from previous page)

4 0 0

Age = (6.5, 22.0> Age = (-inf, 2.5> Age = (-inf, 6.5> Pclass_3 = (0.5, inf) \
0 0 0 1 0
1 0 0 0 1
2 0 1 1 1
3 0 0 0 0
4 0 0 0 0

Fare = (23.350000381469727, inf) Age = (77.0, inf)
0 1 0
1 0 0
2 0 0
3 1 0
4 1 0

[44]: X_test_transformed = explainer.transform(X_test)

X_test_transformed.head(5)

[44]: SibSp = (3.0, inf) Fare = (52.277099609375, 59.08749961853027> \
0 0 0
1 0 0
2 0 0
3 0 0
4 0 0

Pclass_3 = (-inf, 0.5> Sex_female = (-inf, 0.5> Sex_female = (0.5, inf) \
0 0 1 0
1 1 1 0
2 0 1 0
3 1 0 1
4 0 0 1

Age = (3.5, 7.0> Fare = (149.035400390625, 152.5062484741211> \
0 0 0
1 0 0
2 0 0
3 1 0
4 0 0

Age = (6.5, 22.0> Age = (-inf, 2.5> Age = (-inf, 6.5> Pclass_3 = (0.5, inf) \
0 0 0 0 1
1 0 0 0 0
2 1 0 0 1
3 0 0 1 0
4 1 0 0 1

Fare = (23.350000381469727, inf) Age = (77.0, inf)
0 0 0
1 0 0
2 0 0

(continues on next page)

1.3. Tutorials 25

RuleXAI, Release v1.0.0

(continued from previous page)

3 1 0
4 0 0

[41]: dt_binary_dataset_with_TOP_conditions = DecisionTreeClassifier(random_state=1, max_
→˓depth=5)
cv = cross_val_score(dt_binary_dataset_with_TOP_conditions,

X_train_tranformed, y_train, cv=5, scoring = "balanced_accuracy")
print(cv)
print(cv.mean())

[0.77414075 0.86419923 0.76004403 0.79849498 0.81633222]
0.8026422425531315

[42]: dt_binary_dataset_with_TOP_conditions.fit(X_train_tranformed,y_train)

[42]: DecisionTreeClassifier(max_depth=5, random_state=1)

[45]: balanced_accuracy_score(y_test, dt_binary_dataset_with_TOP_conditions.predict(X_test_
→˓transformed))

[45]: 0.7701841969357893

The results obtained on a binary set containing only 25% of all conditions are very similar to those obtained on the
entire set. We can see that with fewer data dimensions, similar results can be obtained. Under appropriate conditions,
a binary set can be used also to reduce the dimensionality of the set.

5.5 Condition importance based on non-overlapping rule conditions

Below we present another analysis of the importance of the conditions from rules derived from a decision tree. This
time the analysis focuses on conditions in rules splitted into base conditions so that individual conditions do not overlap.

[47]: explainer.explain(basic_conditions=True)
explainer.condition_importances_

[47]: 0 | conditions_names 0 | importances \
0 Sex_female = (-inf, 0.5) 0.709511
1 SibSp = <3.0, inf) 0.365199
2 Pclass_3 = <0.5, inf) 0.359394
3 Fare = <149.035400390625, 152.5062484741211) 0.345837
4 Age = <7.0, 22.0) 0.205906
5 Fare = (-inf, 15.372900009155273) 0.201038
6 Age = (-inf, 2.5) 0.188995
7 Pclass_2 = (-inf, 0.5) 0.186594
8 Fare = <23.350000381469727, 31.331250190734863) 0.094355
9 Pclass_3 = (-inf, 0.5) 0.086410
10 Age = <36.5, 49.5) 0.083850
11 Age = <22.0, 36.5) 0.074990
12 Fare = <31.331250190734863, 52.277099609375) 0.045709
13 Embarked_C = (-inf, 0.5) 0.036915
14 Parch = (-inf, 1.5) 0.035371
15 Age = <49.5, 77.0) 0.031508
16 Pclass_1 = (-inf, 0.5) 0.015372

(continues on next page)

26 Chapter 1. Installation

RuleXAI, Release v1.0.0

(continued from previous page)

17 Age = <6.5, 7.0) 0.000000
18 Parch = <1.5, inf) -0.049627
19 Pclass_1 = <0.5, inf) -0.065743
20 Fare = <15.372900009155273, 23.350000381469727) -0.104907
21 Fare = <59.08749961853027, 149.035400390625) -0.137746
22 Fare = <152.5062484741211, inf) -0.191079
23 Age = <3.5, 6.5) -0.222782
24 Fare = <52.277099609375, 59.08749961853027) -0.266055
25 Sex_female = <0.5, inf) -0.330555
26 Age = <77.0, inf) -0.340750
27 Age = <2.5, 3.5) -0.411382

1 | conditions_names 1 | importances
0 Sex_female = <0.5, inf) 0.593139
1 Age = <77.0, inf) 0.427564
2 Age = <3.5, 6.5) 0.306936
3 Fare = <52.277099609375, 59.08749961853027) 0.243723
4 Age = <2.5, 3.5) 0.217869
5 Pclass_3 = (-inf, 0.5) 0.129432
6 Age = (-inf, 2.5) 0.127256
7 Pclass_2 = <0.5, inf) 0.126684
8 Fare = <59.08749961853027, 149.035400390625) 0.092037
9 Fare = <15.372900009155273, 23.350000381469727) 0.09141
10 Fare = <152.5062484741211, inf) 0.079653
11 Fare = <23.350000381469727, 31.331250190734863) 0.075764
12 SibSp = (-inf, 3.0) 0.053725
13 Age = <22.0, 36.5) 0.051714
14 Embarked_C = <0.5, inf) 0.040629
15 Age = <49.5, 77.0) 0.026622
16 Fare = <31.331250190734863, 52.277099609375) 0.025254
17 Age = <6.5, 7.0) 0.0
18 Age = <36.5, 49.5) -0.001405
19 Age = <7.0, 22.0) -0.035978
20 Fare = (-inf, 15.372900009155273) -0.052213
21 Fare = <149.035400390625, 152.5062484741211) -0.05625
22 Pclass_3 = <0.5, inf) -0.060642
23 Sex_female = (-inf, 0.5) -0.151878
24 - -
25 - -
26 - -
27 - -

Looking at the ranking of conditions that do not overlap, we can come to conclusions similar to the ones drawn from
the ranking of overlaping conditions. However, differences can also be seen, e.g. the condition Age = (-inf, 6.5> was
high in the ranking of overlapping conditions, suggesting the conclusion that all children under 6.5 were more likely to
survive. Nevertheless, when we look at the assessment of the basic conditions, we can see that children aged between
2.5 and 6.5 years [Age = <2.5, 3.5), Age = <3.5, 6.5)] had a good chance of survival, and the condition for children
under 2.5 is lower in the ranking. This suggests that infants (under 2.5 years of age) were less likely to survive, possibly
due to their dependency.

1.3. Tutorials 27

RuleXAI, Release v1.0.0

5.3 Presentation of the rules consisting of non-overlapping base conditions

[48]: rules = explainer.get_rules_with_basic_conditions()
for rule in rules:

print(rule)

IF [Sex_female = (-inf, 0.5)] AND [Age = <6.5, 7.0) OR Age = <7.0, 22.0) OR Age = <22.0,␣
→˓36.5) OR Age = <36.5, 49.5) OR Age = <49.5, 77.0)] AND [Fare = (-inf, 15.
→˓372900009155273) OR Fare = <15.372900009155273, 23.350000381469727) OR Fare = <23.
→˓350000381469727, 31.331250190734863) OR Fare = <31.331250190734863, 52.277099609375)]␣
→˓AND [Pclass_1 = (-inf, 0.5)] THEN Survived = {0}
IF [Sex_female = <0.5, inf)] AND [Age = <2.5, 3.5) OR Age = <3.5, 6.5) OR Age = <6.5, 7.
→˓0) OR Age = <7.0, 22.0) OR Age = <22.0, 36.5) OR Age = <36.5, 49.5)] AND [Fare = (-inf,
→˓ 15.372900009155273) OR Fare = <15.372900009155273, 23.350000381469727) OR Fare = <23.
→˓350000381469727, 31.331250190734863) OR Fare = <31.331250190734863, 52.277099609375)␣
→˓OR Fare = <52.277099609375, 59.08749961853027) OR Fare = <59.08749961853027, 149.
→˓035400390625)] AND [Pclass_3 = (-inf, 0.5)] THEN Survived = {1}
IF [Sex_female = <0.5, inf)] AND [Age = (-inf, 2.5) OR Age = <2.5, 3.5) OR Age = <3.5, 6.
→˓5) OR Age = <6.5, 7.0) OR Age = <7.0, 22.0) OR Age = <22.0, 36.5)] AND [Fare = (-inf,␣
→˓15.372900009155273)] AND [Pclass_3 = <0.5, inf)] THEN Survived = {1}
IF [Sex_female = (-inf, 0.5)] AND [Age = <6.5, 7.0) OR Age = <7.0, 22.0) OR Age = <22.0,␣
→˓36.5) OR Age = <36.5, 49.5) OR Age = <49.5, 77.0)] AND [Fare = (-inf, 15.
→˓372900009155273) OR Fare = <15.372900009155273, 23.350000381469727) OR Fare = <23.
→˓350000381469727, 31.331250190734863) OR Fare = <31.331250190734863, 52.277099609375)]␣
→˓AND [Pclass_1 = <0.5, inf)] THEN Survived = {0}
IF [Sex_female = <0.5, inf)] AND [Age = (-inf, 2.5) OR Age = <2.5, 3.5) OR Age = <3.5, 6.
→˓5) OR Age = <6.5, 7.0) OR Age = <7.0, 22.0) OR Age = <22.0, 36.5)] AND [Fare = <15.
→˓372900009155273, 23.350000381469727)] AND [Pclass_3 = <0.5, inf)] THEN Survived = {1}
IF [Sex_female = (-inf, 0.5)] AND [Age = <6.5, 7.0) OR Age = <7.0, 22.0) OR Age = <22.0,␣
→˓36.5) OR Age = <36.5, 49.5) OR Age = <49.5, 77.0) OR Age = <77.0, inf)] AND [Fare =
→˓<59.08749961853027, 149.035400390625) OR Fare = <149.035400390625, 152.5062484741211)␣
→˓OR Fare = <152.5062484741211, inf)] AND [Embarked_C = (-inf, 0.5)] THEN Survived = {0}
IF [Sex_female = <0.5, inf)] AND [Age = <7.0, 22.0) OR Age = <22.0, 36.5) OR Age = <36.5,
→˓ 49.5) OR Age = <49.5, 77.0) OR Age = <77.0, inf)] AND [Fare = <23.350000381469727, 31.
→˓331250190734863) OR Fare = <31.331250190734863, 52.277099609375) OR Fare = <52.
→˓277099609375, 59.08749961853027) OR Fare = <59.08749961853027, 149.035400390625) OR␣
→˓Fare = <149.035400390625, 152.5062484741211) OR Fare = <152.5062484741211, inf)] AND␣
→˓[Pclass_3 = <0.5, inf)] THEN Survived = {0}
IF [Sex_female = (-inf, 0.5)] AND [Age = <6.5, 7.0) OR Age = <7.0, 22.0) OR Age = <22.0,␣
→˓36.5) OR Age = <36.5, 49.5) OR Age = <49.5, 77.0) OR Age = <77.0, inf)] AND [Fare =
→˓<59.08749961853027, 149.035400390625) OR Fare = <149.035400390625, 152.5062484741211)␣
→˓OR Fare = <152.5062484741211, inf)] AND [Embarked_C = <0.5, inf)] THEN Survived = {1}
IF [Sex_female = (-inf, 0.5)] AND [Age = (-inf, 2.5) OR Age = <2.5, 3.5) OR Age = <3.5,␣
→˓6.5)] AND [SibSp = (-inf, 3.0)] THEN Survived = {1}
IF [Sex_female = <0.5, inf)] AND [Age = <49.5, 77.0) OR Age = <77.0, inf)] AND [Fare = (-
→˓inf, 15.372900009155273) OR Fare = <15.372900009155273, 23.350000381469727) OR Fare =
→˓<23.350000381469727, 31.331250190734863) OR Fare = <31.331250190734863, 52.
→˓277099609375) OR Fare = <52.277099609375, 59.08749961853027) OR Fare = <59.
→˓08749961853027, 149.035400390625)] AND [Pclass_3 = (-inf, 0.5)] THEN Survived = {1}
IF [Sex_female = <0.5, inf)] AND [Age = <2.5, 3.5) OR Age = <3.5, 6.5) OR Age = <6.5, 7.
→˓0) OR Age = <7.0, 22.0) OR Age = <22.0, 36.5) OR Age = <36.5, 49.5) OR Age = <49.5, 77.
→˓0) OR Age = <77.0, inf)] AND [Fare = <152.5062484741211, inf)] AND [Pclass_3 = (-inf,␣
→˓0.5)] THEN Survived = {1}

(continues on next page)

28 Chapter 1. Installation

RuleXAI, Release v1.0.0

(continued from previous page)

IF [Sex_female = (-inf, 0.5)] AND [Age = <22.0, 36.5) OR Age = <36.5, 49.5) OR Age = <49.
→˓5, 77.0) OR Age = <77.0, inf)] AND [Fare = <52.277099609375, 59.08749961853027)] THEN␣
→˓Survived = {1}
IF [Sex_female = <0.5, inf)] AND [Age = <36.5, 49.5) OR Age = <49.5, 77.0) OR Age = <77.
→˓0, inf)] AND [Fare = (-inf, 15.372900009155273) OR Fare = <15.372900009155273, 23.
→˓350000381469727)] AND [Pclass_3 = <0.5, inf)] THEN Survived = {0}
IF [Sex_female = (-inf, 0.5)] AND [Age = (-inf, 2.5) OR Age = <2.5, 3.5) OR Age = <3.5,␣
→˓6.5)] AND [SibSp = <3.0, inf)] AND [Parch = (-inf, 1.5)] THEN Survived = {0}
IF [Sex_female = <0.5, inf)] AND [Age = (-inf, 2.5) OR Age = <2.5, 3.5)] AND [Fare = <23.
→˓350000381469727, 31.331250190734863) OR Fare = <31.331250190734863, 52.277099609375)␣
→˓OR Fare = <52.277099609375, 59.08749961853027) OR Fare = <59.08749961853027, 149.
→˓035400390625) OR Fare = <149.035400390625, 152.5062484741211) OR Fare = <152.
→˓5062484741211, inf)] AND [Pclass_3 = <0.5, inf)] THEN Survived = {0}
IF [Sex_female = (-inf, 0.5)] AND [Age = (-inf, 2.5) OR Age = <2.5, 3.5) OR Age = <3.5,␣
→˓6.5)] AND [Fare = <31.331250190734863, 52.277099609375) OR Fare = <52.277099609375, 59.
→˓08749961853027) OR Fare = <59.08749961853027, 149.035400390625) OR Fare = <149.
→˓035400390625, 152.5062484741211) OR Fare = <152.5062484741211, inf)] AND [SibSp = <3.0,
→˓ inf)] AND [Parch = <1.5, inf)] THEN Survived = {0}
IF [Sex_female = <0.5, inf)] AND [Age = (-inf, 2.5)] AND [Pclass_3 = (-inf, 0.5)] AND␣
→˓[Pclass_2 = <0.5, inf)] THEN Survived = {1}
IF [Sex_female = <0.5, inf)] AND [Age = <3.5, 6.5) OR Age = <6.5, 7.0)] AND [Fare = <23.
→˓350000381469727, 31.331250190734863) OR Fare = <31.331250190734863, 52.277099609375)␣
→˓OR Fare = <52.277099609375, 59.08749961853027) OR Fare = <59.08749961853027, 149.
→˓035400390625) OR Fare = <149.035400390625, 152.5062484741211) OR Fare = <152.
→˓5062484741211, inf)] AND [Pclass_3 = <0.5, inf)] THEN Survived = {1}
IF [Sex_female = <0.5, inf)] AND [Age = <2.5, 3.5) OR Age = <3.5, 6.5) OR Age = <6.5, 7.
→˓0) OR Age = <7.0, 22.0) OR Age = <22.0, 36.5) OR Age = <36.5, 49.5) OR Age = <49.5, 77.
→˓0) OR Age = <77.0, inf)] AND [Fare = <149.035400390625, 152.5062484741211)] AND␣
→˓[Pclass_3 = (-inf, 0.5)] THEN Survived = {0}
IF [Sex_female = (-inf, 0.5)] AND [Age = <6.5, 7.0) OR Age = <7.0, 22.0)] AND [Fare =
→˓<52.277099609375, 59.08749961853027)] THEN Survived = {0}
IF [Sex_female = (-inf, 0.5)] AND [Age = <77.0, inf)] AND [Fare = (-inf, 15.
→˓372900009155273) OR Fare = <15.372900009155273, 23.350000381469727) OR Fare = <23.
→˓350000381469727, 31.331250190734863) OR Fare = <31.331250190734863, 52.277099609375)]␣
→˓THEN Survived = {1}
IF [Sex_female = (-inf, 0.5)] AND [Age = (-inf, 2.5) OR Age = <2.5, 3.5) OR Age = <3.5,␣
→˓6.5)] AND [Fare = (-inf, 15.372900009155273) OR Fare = <15.372900009155273, 23.
→˓350000381469727) OR Fare = <23.350000381469727, 31.331250190734863)] AND [SibSp = <3.0,
→˓ inf)] AND [Parch = <1.5, inf)] THEN Survived = {0}
IF [Sex_female = <0.5, inf)] AND [Age = (-inf, 2.5)] AND [Pclass_3 = (-inf, 0.5)] AND␣
→˓[Pclass_2 = (-inf, 0.5)] THEN Survived = {0}

1.3. Tutorials 29

RuleXAI, Release v1.0.0

IV. Using the RuleKit library - a versatile tool for rule learning - to generate rules

In the previous section, the rules obtained from the decision tree were analysed. In this section the analysis is based
on rules obtained using the algorithm dedicated for rule-based learning. A set of such algorithms is provided by the
RuleKit library.

1. Data preparation for RuleKit

RuleKit supports missing values and categorical data, so the step of preparing data specifically for this algorithm is
not necessary - what was done in Section I is sufficient. The only thing to remember is that RuleKit accepts missing
values for numeric columns as nan, while for categorical columns as None. For this reason it was necessary to change
the missing values in the Embarked column from nan to None.

[49]: import numpy as np

X = data.drop(["Survived"], axis=1)
X.Embarked.replace(np.nan, None, inplace = True)
y = data.Survived

X.head(5)

[49]: Pclass Sex Age SibSp Parch Fare Embarked
0 3 male 22.0 1 0 7.2500 S
1 1 female 38.0 1 0 71.2833 C
2 3 female 26.0 0 0 7.9250 S
3 1 female 35.0 1 0 53.1000 S
4 3 male 35.0 0 0 8.0500 S

2. Data split for training and test datasets

[50]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42)

3. Building and testing the model

[51]: from sklearn.model_selection import cross_val_score
from rulekit import RuleKit
from rulekit.classification import RuleClassifier
from rulekit.params import Measures

RuleKit.init()

rc = RuleClassifier(
induction_measure=Measures.C2,
pruning_measure=Measures.C2,
voting_measure=Measures.C2,
min_rule_covered=5

(continues on next page)

30 Chapter 1. Installation

RuleXAI, Release v1.0.0

(continued from previous page)

)
cv = cross_val_score(rc, X_train, y_train, cv=5, scoring = "balanced_accuracy")
print(cv)
print(cv.mean())

[0.73958333 0.88666667 0.70763889 0.8027027 0.82383191]
0.7920847009219034

[52]: rc.fit(X_train, y_train)

[52]: <rulekit.classification.RuleClassifier at 0x29d6da16fd0>

[53]: balanced_accuracy_score(y_test, rc.predict(X_test))

[53]: 0.749756125552304

The quality of the rule model is similar to that obtained for the decision tree. By controlling the rule model induction
parameters even better results could be obtained, but this is not the subject of this notebook.

4. Presentation of the rules obtained by RuleKit

[54]: for rule in rc.model.rules:
print(rule)

IF Age = (-inf, 0.92) THEN Survived = {1}
IF Pclass = {2} AND Sex = {female} THEN Survived = {1}
IF Parch = (-inf, 1.50) AND Sex = {female} AND Fare = <29.36, inf) THEN Survived = {1}
IF Pclass = {1} AND Sex = {female} AND Age = <8, inf) AND Fare = <29.36, inf) THEN␣
→˓Survived = {1}
IF Parch = (-inf, 1.50) AND Sex = {female} AND SibSp = (-inf, 2.50) AND Fare = <21.72,␣
→˓inf) THEN Survived = {1}
IF Sex = {female} AND SibSp = <0.50, inf) AND Age = <27.50, inf) AND Fare = <15.98, 22.
→˓34) THEN Survived = {1}
IF Parch = (-inf, 1.50) AND Sex = {female} AND SibSp = (-inf, 2.50) AND Fare = <10.48,␣
→˓inf) THEN Survived = {1}
IF Parch = (-inf, 3.50) AND Sex = {female} AND SibSp = (-inf, 0.50) AND Fare = <10.83,␣
→˓inf) THEN Survived = {1}
IF Parch = (-inf, 1.50) AND Sex = {female} AND Fare = <6.99, inf) THEN Survived = {1}
IF SibSp = (-inf, 2) AND Age = <8, 43.50) AND Fare = <82.66, inf) THEN Survived = {1}
IF SibSp = (-inf, 1.50) AND Age = <3, 62) AND Fare = <74.38, inf) THEN Survived = {1}
IF SibSp = (-inf, 1.50) AND Age = <22.50, 44.50) AND Fare = <52.28, 143.59) THEN␣
→˓Survived = {1}
IF Pclass = {2} AND Age = (-inf, 6.50) THEN Survived = {1}
IF Embarked = {S} AND Age = <2.50, 6.50) THEN Survived = {1}
IF Parch = (-inf, 0.50) AND Fare = <29.85, inf) THEN Survived = {1}
IF Pclass = {1} AND Parch = (-inf, 0.50) AND Age = (-inf, 48.50) AND Fare = <26.14, 30.
→˓75) THEN Survived = {1}
IF Embarked = {C} AND Age = (-inf, 29.50) AND Fare = <7.56, 135.07) THEN Survived = {1}
IF Parch = (-inf, 3.50) AND SibSp = (-inf, 2.50) AND Age = (-inf, 51.50) AND Fare = <18.
→˓38, inf) THEN Survived = {1}
IF Age = (-inf, 42.50) AND Fare = <10.48, inf) THEN Survived = {1}

(continues on next page)

1.3. Tutorials 31

RuleXAI, Release v1.0.0

(continued from previous page)

IF SibSp = (-inf, 0.50) AND Age = <30.50, 44.50) AND Fare = <7.91, inf) THEN Survived =
→˓{1}
IF Parch = (-inf, 3.50) AND SibSp = (-inf, 2.50) AND Fare = <7.91, inf) THEN Survived =
→˓{1}
IF Age = <20, 27.50) AND Fare = <7.13, 7.80) THEN Survived = {1}
IF Parch = (-inf, 3.50) AND SibSp = (-inf, 4.50) AND Age = (-inf, 60.50) AND Fare = <7.
→˓69, inf) THEN Survived = {1}
IF SibSp = <4.50, inf) THEN Survived = {0}
IF Parch = <3.50, inf) THEN Survived = {0}
IF Age = <26.50, inf) AND Fare = (-inf, 7.13) THEN Survived = {0}
IF Fare = <2.01, 7.13) THEN Survived = {0}
IF Sex = {male} AND Age = <13, 60.50) AND Fare = (-inf, 26.27) THEN Survived = {0}
IF Sex = {male} AND Age = <13, 77) AND Fare = (-inf, 52.28) THEN Survived = {0}
IF Embarked = {S} AND Sex = {male} AND Age = <13, 30.50) AND Fare = <7.80, inf) THEN␣
→˓Survived = {0}
IF Sex = {male} AND Age = <13, 77) AND Fare = (-inf, 86.29) THEN Survived = {0}
IF Sex = {male} AND Age = <13, 77) AND Fare = (-inf, 387.66) THEN Survived = {0}
IF Pclass = {3} AND Sex = {male} AND Age = <6.50, 25.50) AND Fare = <16, inf) THEN␣
→˓Survived = {0}
IF Pclass = {3} AND Fare = <23.35, 52.28) THEN Survived = {0}
IF Fare = <9.41, 10.48) THEN Survived = {0}
IF Embarked = {S} AND Age = <20.50, 30.50) AND Fare = <7.87, 8.08) THEN Survived = {0}
IF Embarked = {S} AND Parch = (-inf, 0.50) AND Fare = (-inf, 10.48) THEN Survived = {0}
IF Age = <17.50, inf) AND Fare = (-inf, 10.48) THEN Survived = {0}
IF Embarked = {S} AND Pclass = {3} AND Parch = (-inf, 0.50) AND SibSp = (-inf, 2.50) AND␣
→˓Age = <16.50, inf) AND Fare = <7.99, 51.70) THEN Survived = {0}
IF Pclass = {3} AND Age = <6.50, inf) AND Fare = <13.29, 15.17) THEN Survived = {0}
IF Parch = (-inf, 2.50) AND Age = <2.50, inf) AND Fare = (-inf, 29.41) THEN Survived =
→˓{0}

V. Analysis with RuleXAI of rules derived with RuleKit

1. Initialisation and explaination

[55]: from rulexai.explainer import RuleExplainer
explainer = RuleExplainer(model=rc, X=X_train, y=y_train, type="classification")
explainer.explain()

[55]: <rulexai.explainer.RuleExplainer at 0x29d6e38f3a0>

2. Feature importance determined by RuleXAI

[56]: explainer.feature_importances_

[56]: 1 | attributes 1 | importances 0 | attributes 0 | importances
0 Sex 2.153698 Fare 2.745895
1 Fare 1.834094 Sex 1.481201
2 Age 1.518890 Pclass 0.731226
3 Pclass 0.437313 Parch 0.571222

(continues on next page)

32 Chapter 1. Installation

RuleXAI, Release v1.0.0

(continued from previous page)

4 SibSp 0.161694 Age 0.550799
5 Embarked 0.135499 SibSp 0.513230
6 Parch 0.089201 Embarked 0.205367

3. Rule condition importance

[57]: explainer.condition_importances_

[57]: 1 | conditions_names 1 | importances 0 | conditions_names \
0 Sex = {female} 2.153698 Sex = {male}
1 Age = (-inf, 0.92) 0.510823 Pclass = {3}
2 Age = <2.5, 6.5) 0.426003 Fare = <2.01, 7.13)
3 Age = (-inf, 6.5) 0.359902 Fare = <9.41, 10.48)
4 Pclass = {2} 0.275112 Fare = (-inf, 10.48)
5 Fare = <82.66, inf) 0.267579 SibSp = <4.5, inf)
6 Fare = <52.28, 143.59) 0.257940 Parch = <3.5, inf)
7 Fare = <29.85, inf) 0.247359 Fare = (-inf, 7.13)
8 Fare = <74.38, inf) 0.239459 Embarked = {S}
9 Fare = <10.48, inf) 0.213492 Fare = <7.87, 8.08)
10 Pclass = {1} 0.162201 Age = <13.0, 77.0)
11 Embarked = {C} 0.154946 Fare = <13.29, 15.17)
12 Fare = <29.36, inf) 0.149020 Fare = <23.35, 52.28)
13 Fare = <7.91, inf) 0.125088 Fare = (-inf, 29.41)
14 Fare = <18.38, inf) 0.098349 Age = <20.5, 30.5)
15 Parch = (-inf, 1.5) 0.071067 Fare = (-inf, 26.27)
16 SibSp = (-inf, 1.5) 0.066773 Fare = (-inf, 52.28)
17 Fare = <21.72, inf) 0.065569 Age = <6.5, 25.5)
18 Fare = <10.83, inf) 0.062618 Parch = (-inf, 0.5)
19 Age = <20.0, 27.5) 0.059567 Age = <13.0, 30.5)
20 Age = <30.5, 44.5) 0.057521 Age = <6.5, inf)
21 SibSp = (-inf, 2.5) 0.056610 Age = <17.5, inf)
22 Age = <27.5, inf) 0.043101 Age = <13.0, 60.5)
23 Fare = <15.98, 22.34) 0.035205 Age = <26.5, inf)
24 Fare = <7.56, 135.07) 0.032317 Fare = (-inf, 86.29)
25 Age = (-inf, 48.5) 0.030201 Age = <2.5, inf)
26 SibSp = <0.5, inf) 0.028345 Fare = <7.99, 51.7)
27 Fare = <26.14, 30.75) 0.026043 Age = <16.5, inf)
28 Age = <22.5, 44.5) 0.024332 Fare = (-inf, 387.66)
29 Parch = (-inf, 3.5) 0.024229 Parch = (-inf, 2.5)
30 Fare = <7.69, inf) 0.018042 SibSp = (-inf, 2.5)
31 SibSp = (-inf, 2.0) 0.008422 Fare = <7.8, inf)
32 Fare = <6.99, inf) 0.007874 Fare = <16.0, inf)
33 SibSp = (-inf, 4.5) 0.006384 -
34 Age = <3.0, 62.0) 0.004901 -
35 Age = <8.0, 43.5) 0.004844 -
36 Age = (-inf, 51.5) 0.002246 -
37 Age = (-inf, 60.5) 0.002245 -
38 Age = (-inf, 42.5) 0.000703 -
39 Age = <8.0, inf) -0.003570 -
40 Age = (-inf, 29.5) -0.003928 -
41 SibSp = (-inf, 0.5) -0.004841 -

(continues on next page)

1.3. Tutorials 33

RuleXAI, Release v1.0.0

(continued from previous page)

42 Parch = (-inf, 0.5) -0.006095 -
43 Fare = <7.13, 7.8) -0.011860 -
44 Embarked = {S} -0.019447 -

0 | importances
0 1.481201
1 0.731226
2 0.519133
3 0.517857
4 0.516811
5 0.515306
6 0.508929
7 0.482425
8 0.205367
9 0.20006
10 0.12964
11 0.123496
12 0.112628
13 0.110282
14 0.087622
15 0.071871
16 0.068313
17 0.062968
18 0.060664
19 0.055904
20 0.052733
21 0.048465
22 0.041519
23 0.040535
24 0.03164
25 0.019917
26 0.015628
27 0.011496
28 0.006411
29 0.00163
30 -0.002076
31 -0.014855
32 -0.015803
33 -
34 -
35 -
36 -
37 -
38 -
39 -
40 -
41 -
42 -
43 -
44 -

Looking at the importance of the features and conditions obtained from the rules determined by RuleKit, one can come
to conclusions similar to those obtained for rules determined from the decision tree. The main difference is that in rules

34 Chapter 1. Installation

RuleXAI, Release v1.0.0

generated by RuleKit, the fare also plays an important role - the lower the fare, the person traveled in a lower class what
determined their survival.

4. Creation of a binary dataset based on top conditions

[59]: X_train_tranformed = explainer.fit_transform(X_train, selector=25)

X_train_tranformed.head(5)

[59]: Fare = <52.28, 143.59) Fare = <29.85, inf) Fare = <2.01, 7.13) Pclass = {1} \
0 1 1 0 1
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

Age = (-inf, 0.92) Parch = <3.5, inf) Fare = <74.38, inf) Age = <2.5, 6.5) \
0 0 0 1 1
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

Sex = {male} Pclass = {3} Fare = <10.48, inf) Fare = <9.41, 10.48) \
0 1 0 1 0
1 1 1 0 0
2 0 1 1 0
3 1 0 1 0
4 1 0 1 0

Fare = (-inf, 10.48) SibSp = <4.5, inf) Fare = (-inf, 7.13) Sex = {female} \
0 0 0 0 0
1 1 0 0 0
2 0 0 0 1
3 0 0 0 0
4 0 0 0 0

Pclass = {2} Fare = <82.66, inf) Age = (-inf, 6.5)
0 0 0 1
1 0 0 0
2 0 0 1
3 1 0 0
4 1 0 0

[60]: X_test_transformed = explainer.transform(X_test)

X_test_transformed.head(5)

[60]: Fare = <52.28, 143.59) Fare = <29.85, inf) Fare = <2.01, 7.13) Pclass = {1} \
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 1 0 0

(continues on next page)

1.3. Tutorials 35

RuleXAI, Release v1.0.0

(continued from previous page)

4 0 0 0 0

Age = (-inf, 0.92) Parch = <3.5, inf) Fare = <74.38, inf) Age = <2.5, 6.5) \
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 1
4 0 0 0 0

Sex = {male} Pclass = {3} Fare = <10.48, inf) Fare = <9.41, 10.48) \
0 1 1 1 0
1 1 0 1 0
2 1 1 0 0
3 0 0 1 0
4 0 1 1 0

Fare = (-inf, 10.48) SibSp = <4.5, inf) Fare = (-inf, 7.13) Sex = {female} \
0 0 0 0 0
1 0 0 0 0
2 1 0 0 0
3 0 0 0 1
4 0 0 0 1

Pclass = {2} Fare = <82.66, inf) Age = (-inf, 6.5)
0 0 0 0
1 1 0 0
2 0 0 0
3 1 0 1
4 0 0 0

A binary dataset created in this way can be used to create a classifier using another machine learning algorithm. The
advantage of this approach is that RuleKit has created rules on a set containing null values and containing both numeric
and categorical variables. However, the prepared dataset consists only of numerical values 0 and 1 determining whether
a given condition has been met and does not contain empty values. Therefore, you can easily use algorithms that deal
only with numerical values and do not handle missing values, such as RandomForest as shown below.

[62]: from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier(random_state=1)
cv = cross_val_score(rf, X_train_tranformed,

y_train, cv=5, scoring = "balanced_accuracy")
print(cv)
print(cv.mean())

[0.7570922 0.86241057 0.703082 0.73188406 0.8113155]
0.7731568645642581

[64]: rf.fit(X_train_tranformed, y_train)

[64]: RandomForestClassifier(random_state=1)

36 Chapter 1. Installation

RuleXAI, Release v1.0.0

[65]: balanced_accuracy_score(y_test, rf.predict(X_test_transformed))

[65]: 0.7861077638147702

VI. Summary

The presented analysis shows how the RuleXAI library may be used for data analysis and model explanation. Expla-
nations, both global and local, are performed using the generated rule-based model representation.

[2]: import pandas as pd
from scipy.io import arff
from rulekit import RuleKit
from rulekit.regression import RuleRegressor
from rulekit.params import Measures

from rulexai.explainer import RuleExplainer

1.3.2 CPU

Read data

[3]: dataset_path = "./data/cpu.arff"
data = pd.DataFrame(arff.loadarff(dataset_path)[0])

code to change encoding of the file
tmp_df = data.select_dtypes([object])
tmp_df = tmp_df.stack().str.decode("utf-8").unstack()
for col in tmp_df:

data[col] = tmp_df[col].replace({"?": None})

x = data.drop(["class"], axis=1)
y = data["class"]

Train RuleKit model

[11]: # RuleKit
RuleKit.init()

reg = RuleRegressor(
induction_measure=Measures.C2,
pruning_measure=Measures.C2,
voting_measure=Measures.C2,

)
reg.fit(x, y)

[11]: <rulekit.regression.RuleRegressor at 0x28bffccc670>

1.3. Tutorials 37

RuleXAI, Release v1.0.0

Rules

[12]: for rule in reg.model.rules:
print(rule, rule.stats)

IF vendor = {formation} THEN class = {34} [34,34] (p = 5.0, n = 0.0, P = 6.0, N = 203.0,␣
→˓weight = 0.9166666666666667, pvalue = 0.0)
IF MMIN = <80, inf) AND MMAX = (-inf, 1750) THEN class = {18} [16.92,19.08] (p = 10.0, n␣
→˓= 1.0, P = 11.0, N = 198.0, weight = 0.8629476584022039, pvalue = 7.355108555449812e-
→˓21)
IF MMIN = <756, inf) AND MMAX = (-inf, 4250) AND CHMAX = <7, 22) AND CHMIN = (-inf, 3.
→˓50) THEN class = {32} [30.64,33.36] (p = 4.0, n = 1.0, P = 7.0, N = 202.0, weight = 0.
→˓6231258840169731, pvalue = 1.1803717269256882e-08)
IF MMIN = <756, inf) AND MMAX = (-inf, 4250) AND MYCT = (-inf, 232.50) AND CHMAX = <3.50,
→˓ 22) AND CHMIN = (-inf, 3.50) THEN class = {29} [24.98,33.02] (p = 15.0, n = 3.0, P =␣
→˓35.0, N = 174.0, weight = 0.5712917350848385, pvalue = 7.408462419973687e-25)
IF MMIN = (-inf, 1500) AND MMAX = <1500, 4250) AND MYCT = <94.50, inf) AND CHMAX = <2.50,
→˓ 44) THEN class = {24} [21.77,26.23] (p = 18.0, n = 7.0, P = 23.0, N = 186.0, weight =␣
→˓0.6108789153810191, pvalue = 1.183267277682215e-40)
IF MMAX = (-inf, 4750) THEN class = {24} [10.30,37.70] (p = 69.0, n = 2.0, P = 88.0, N =␣
→˓121.0, weight = 0.8486424746828075, pvalue = 1.6425318084016525e-60)
IF MYCT = <87, inf) AND CHMAX = (-inf, 96) THEN class = {29} [1.17,56.83] (p = 107.0, n␣
→˓= 11.0, P = 124.0, N = 85.0, weight = 0.7179513877721673, pvalue = 1.3893662585668293e-
→˓64)
IF MMAX = <6150, 9240) AND MYCT = (-inf, 129) AND CACH = <2, 28) AND CHMAX = (-inf, 46)␣
→˓THEN class = {46} [43.77,48.23] (p = 9.0, n = 2.0, P = 13.0, N = 196.0, weight = 0.
→˓6821036106750392, pvalue = 1.023395667474569e-17)
IF MMIN = (-inf, 2150) AND MMAX = <5000, 9240) AND MYCT = (-inf, 146.50) AND CHMAX = <5.
→˓50, inf) THEN class = {46} [14.85,77.15] (p = 25.0, n = 1.0, P = 143.0, N = 66.0,␣
→˓weight = 0.5158687466379773, pvalue = 7.403283011266057e-14)
IF MMIN = <2310, 4500) AND MYCT = <31.50, 102.50) AND CACH = (-inf, 48) AND CHMAX = (-
→˓inf, 40) THEN class = {80} [57.27,102.73] (p = 12.0, n = 2.0, P = 34.0, N = 175.0,␣
→˓weight = 0.5610564225690277, pvalue = 1.34750514438087e-09)
IF MMIN = <640, 4500) AND MMAX = <7150, 24000) THEN class = {65} [36.20,93.80] (p = 60.0,
→˓ n = 13.0, P = 68.0, N = 141.0, weight = 0.6927380687046022, pvalue = 2.
→˓2589525624983582e-39)
IF MYCT = <27.50, 44) AND CHMIN = (-inf, 10) THEN class = {253} [192.76,313.24] (p = 7.0,
→˓ n = 3.0, P = 12.0, N = 197.0, weight = 0.5396996615905246, pvalue = 0.
→˓001963352522246969)
IF MMIN = <884, inf) AND MMAX = <9240, inf) AND CHMAX = <2.50, 88) AND CHMIN = (-inf,␣
→˓14) THEN class = {117} [44.09,189.91] (p = 49.0, n = 11.0, P = 80.0, N = 129.0, weight␣
→˓= 0.5667708333333334, pvalue = 4.475942404933969e-11)
IF MMIN = <3000, inf) AND MMAX = <24000, 48000) AND CHMIN = <14, inf) THEN class = {381}␣
→˓[301.01,460.99] (p = 6.0, n = 1.0, P = 8.0, N = 201.0, weight = 0.7450248756218906,␣
→˓pvalue = 0.047637666066025854)
IF MMIN = (-inf, 24000) AND MMAX = <28000, inf) AND MYCT = (-inf, 95) AND CACH = (-inf,␣
→˓192) THEN class = {341} [129.60,552.40] (p = 19.0, n = 3.0, P = 34.0, N = 175.0,␣
→˓weight = 0.6524789915966387, pvalue = 0.990671648706587)

38 Chapter 1. Installation

RuleXAI, Release v1.0.0

RuleXAI

[13]: explainer = RuleExplainer(model=reg, X=x, y=y, type="regression")
explainer.explain()

[13]: <rulexai.explainer.RuleExplainer at 0x28ba8c77b50>

Feature importance

[14]: explainer.feature_importances_

[14]: attributes importances
3 MMAX 4.014332
2 CHMIN 3.028757
6 vendor 0.916667
1 CHMAX 0.460550
0 CACH 0.289558
4 MMIN 0.167137
5 MYCT -1.233983

Condition importance

[15]: explainer.condition_importances_

[15]: conditions importances
0 CHMIN = (-inf, 10.0) 2.127775
1 vendor = {formation} 0.916667
2 MMAX = (-inf, 4750.0) 0.848642
3 MMAX = (-inf, 1750.0) 0.827179
4 MYCT = <87.0, inf) 0.643064
5 MMAX = (-inf, 4250.0) 0.528220
6 MMAX = <7150.0, 24000.0) 0.481404
7 CHMIN = (-inf, 14.0) 0.402859
8 MMAX = <28000.0, inf) 0.381381
9 MMAX = <24000.0, 48000.0) 0.339882
10 MMAX = <6150.0, 9240.0) 0.307522
11 CHMIN = (-inf, 3.5) 0.260506
12 CHMIN = <14.0, inf) 0.237616
13 MMAX = <1500.0, 4250.0) 0.224479
14 MMIN = <640.0, 4500.0) 0.211334
15 MMAX = <5000.0, 9240.0) 0.198756
16 MMIN = (-inf, 1500.0) 0.198058
17 MMIN = (-inf, 2150.0) 0.185016
18 MYCT = <94.5, inf) 0.179675
19 CHMAX = <2.5, 88.0) 0.165561
20 CACH = (-inf, 48.0) 0.154017
21 CACH = <2.0, 28.0) 0.109025
22 MMIN = <2310.0, 4500.0) 0.090892
23 CHMAX = (-inf, 96.0) 0.074887
24 CHMAX = (-inf, 46.0) 0.066936
25 CHMAX = <7.0, 22.0) 0.062233

(continues on next page)

1.3. Tutorials 39

RuleXAI, Release v1.0.0

(continued from previous page)

26 CHMAX = (-inf, 40.0) 0.059474
27 CHMAX = <3.5, 22.0) 0.056674
28 MMIN = (-inf, 24000.0) 0.054221
29 CHMAX = <2.5, 44.0) 0.049421
30 MMIN = <80.0, inf) 0.035768
31 CACH = (-inf, 192.0) 0.026516
32 MYCT = <31.5, 102.5) 0.026372
33 MMIN = <756.0, inf) 0.003292
34 MYCT = (-inf, 232.5) -0.033761
35 MMIN = <884.0, inf) -0.069930
36 CHMAX = <5.5, inf) -0.074637
37 MYCT = (-inf, 146.5) -0.117779
38 MMAX = <9240.0, inf) -0.123134
39 MYCT = (-inf, 129.0) -0.151520
40 MYCT = (-inf, 95.0) -0.191957
41 MMIN = <3000.0, inf) -0.541514
42 MYCT = <27.5, 44.0) -1.588076

Local explainability

[16]: explainer.local_explainability(x.iloc[0, :], pd.DataFrame(y).iloc[0, :], plot = True)

Example:
vendor adviser
MYCT 125.0
MMIN 256.0
MMAX 6000.0
CACH 256.0
CHMIN 16.0
CHMAX 128.0
class 199.0
Name: 0, dtype: object

Rules that covers this example:
IF MMIN = (-inf, 2150.0) AND MMAX = <5000.0, 9240.0) AND MYCT = (-inf, 146.5) AND CHMAX␣
→˓= <5.5, inf) THEN class = {46.0}

Importances of the conditions from rules covering the example
conditions importances

0 MMAX = <5000.0, 9240.0) 0.198756
1 MMIN = (-inf, 2150.0) 0.185016
2 CHMAX = <5.5, inf) -0.074637
3 MYCT = (-inf, 146.5) -0.117779

40 Chapter 1. Installation

RuleXAI, Release v1.0.0

[16]: conditions importances
0 MMAX = <5000.0, 9240.0) 0.198756
1 MMIN = (-inf, 2150.0) 0.185016
2 CHMAX = <5.5, inf) -0.074637
3 MYCT = (-inf, 146.5) -0.117779

[2]: import pandas as pd
from scipy.io import arff
from rulekit import RuleKit
from rulekit.survival import SurvivalRules
from rulekit.params import Measures

from rulexai.explainer import RuleExplainer

1.3.3 GBSG2

Read data

[3]: dataset_path = "./data/GBSG2.arff"
data = pd.DataFrame(arff.loadarff(dataset_path)[0])

code to change encoding of the file
tmp_df = data.select_dtypes([object])
tmp_df = tmp_df.stack().str.decode("utf-8").unstack()
for col in tmp_df:

data[col] = tmp_df[col].replace({"?": None})

x = data.drop(["survival_status"], axis=1)
y = data["survival_status"]

1.3. Tutorials 41

RuleXAI, Release v1.0.0

Train RuleKit model

[4]: # RuleKit
RuleKit.init()

srv = SurvivalRules(survival_time_attr="survival_time")
srv.fit(values=x, labels=y)

[4]: <rulekit.survival.SurvivalRules at 0x176db91a880>

Rules

[5]: for rule in srv.model.rules:
print(rule, rule.stats)

IF pnodes = (-inf, 3.50) THEN survival_status = {NaN} (p = 304.0, n = 0.0, P = 564.0, N␣
→˓= 0.0, weight = 0.9999999999999998, pvalue = 2.220446049250313e-16)
IF pnodes = (-inf, 17.50) AND progrec = (-inf, 9.50) AND age = <41.50, 52.50) AND estrec␣
→˓= <0.50, 29) THEN survival_status = {NaN} (p = 21.0, n = 0.0, P = 564.0, N = 0.0,␣
→˓weight = 0.9999999999909083, pvalue = 9.09172737095787e-12)
IF pnodes = <4.50, 19) AND progrec = (-inf, 11.50) AND age = <41.50, 64.50) AND estrec =
→˓<0.50, 41) THEN survival_status = {NaN} (p = 33.0, n = 0.0, P = 564.0, N = 0.0, weight␣
→˓= 1.0, pvalue = 0.0)
IF pnodes = <4.50, inf) AND progrec = (-inf, 25.50) THEN survival_status = {NaN} (p =␣
→˓113.0, n = 0.0, P = 564.0, N = 0.0, weight = 1.0, pvalue = 0.0)
IF pnodes = <4.50, inf) AND progrec = (-inf, 99) THEN survival_status = {NaN} (p = 156.0,
→˓ n = 0.0, P = 564.0, N = 0.0, weight = 1.0, pvalue = 0.0)
IF pnodes = <5.50, inf) AND progrec = (-inf, 135) THEN survival_status = {NaN} (p = 144.
→˓0, n = 0.0, P = 564.0, N = 0.0, weight = 1.0, pvalue = 0.0)
IF pnodes = <4.50, inf) AND progrec = (-inf, 233) THEN survival_status = {NaN} (p = 185.
→˓0, n = 0.0, P = 564.0, N = 0.0, weight = 1.0, pvalue = 0.0)
IF pnodes = (-inf, 4.50) AND progrec = <9, inf) AND age = <39.50, inf) THEN survival_
→˓status = {NaN} (p = 245.0, n = 0.0, P = 564.0, N = 0.0, weight = 1.0, pvalue = 0.0)
IF progrec = <107, inf) THEN survival_status = {NaN} (p = 168.0, n = 0.0, P = 564.0, N =␣
→˓0.0, weight = 0.9999999989621143, pvalue = 1.0378856662995872e-09)
IF pnodes = <3.50, inf) AND progrec = (-inf, 105.50) THEN survival_status = {NaN} (p =␣
→˓195.0, n = 0.0, P = 564.0, N = 0.0, weight = 1.0, pvalue = 0.0)

RuleXAI

[6]: explainer = RuleExplainer(model=srv, X=x, y=y, type="survival")
explainer.explain()

42 Chapter 1. Installation

RuleXAI, Release v1.0.0

[6]: <rulexai.explainer.RuleExplainer at 0x176db937700>

Feature importance

[7]: explainer.feature_importances_

[7]: attributes importances
2 pnodes 460.222804
3 progrec 251.499862
0 age 20.523849
1 estrec 13.347720

Condition importance

[8]: explainer.condition_importances_

[8]: conditions importances
0 pnodes = <4.5, inf) 207.268572
1 pnodes = (-inf, 3.5) 67.394775
2 pnodes = <5.5, inf) 64.254026
3 pnodes = <3.5, inf) 64.104973
4 progrec = (-inf, 25.5) 48.923100
5 progrec = <107.0, inf) 37.252374
6 progrec = (-inf, 105.5) 33.962572
7 progrec = (-inf, 99.0) 33.423755
8 pnodes = (-inf, 4.5) 32.835122
9 progrec = (-inf, 135.0) 25.353218
10 progrec = (-inf, 11.5) 23.663185
11 progrec = (-inf, 9.5) 23.506762
12 pnodes = <4.5, 19.0) 18.150272
13 progrec = <9.0, inf) 13.146344
14 progrec = (-inf, 233.0) 12.268552
15 estrec = <0.5, 29.0) 10.450381
16 age = <41.5, 64.5) 9.275232
17 age = <41.5, 52.5) 8.077389
18 pnodes = (-inf, 17.5) 6.215064
19 age = <39.5, inf) 3.171229
20 estrec = <0.5, 41.0) 2.897339

Local explainability

[9]: explainer.local_explainability(x.iloc[0, :], pd.DataFrame(y).iloc[0, :], plot = True)

Example:
horTh no
age 70.0
menostat Post
tsize 21.0
tgrade II

(continues on next page)

1.3. Tutorials 43

RuleXAI, Release v1.0.0

(continued from previous page)

pnodes 3.0
progrec 48.0
estrec 66.0
survival_time 1814.0
survival_status 1.0
Name: 0, dtype: object

Rules that covers this example:
IF pnodes = (-inf, 3.5) THEN survival_status = {NaN}
IF pnodes = (-inf, 4.5) AND progrec = <9.0, inf) AND age = <39.5, inf) THEN survival_
→˓status = {NaN}

Importances of the conditions from rules covering the example
conditions importances

0 pnodes = (-inf, 3.5) 67.394775
1 pnodes = (-inf, 4.5) 32.835122
2 progrec = <9.0, inf) 13.146344
3 age = <39.5, inf) 3.171229

[9]: conditions importances
0 pnodes = (-inf, 3.5) 67.394775
1 pnodes = (-inf, 4.5) 32.835122
2 progrec = <9.0, inf) 13.146344
3 age = <39.5, inf) 3.171229

44 Chapter 1. Installation

RuleXAI, Release v1.0.0

1.3.4 Black-box model aproximation

The purpose of this notebook is to demonstrate the possibility of using RuleXAI to explain black box models. The data
set titanic from OpenML (https://www.openml.org/d/40945) was used in the analysis. It is a popular data set often
used in various types of examples, therefore it was decided to use it in this analysis.

Data load

[48]: import pandas as pd

data = pd.read_csv('./data/titanic_openml.csv')
data

[48]: pclass survived name \
0 1 1 Allen, Miss. Elisabeth Walton
1 1 1 Allison, Master. Hudson Trevor
2 1 0 Allison, Miss. Helen Loraine
3 1 0 Allison, Mr. Hudson Joshua Creighton
4 1 0 Allison, Mrs. Hudson J C (Bessie Waldo Daniels)
...
1304 3 0 Zabour, Miss. Hileni
1305 3 0 Zabour, Miss. Thamine
1306 3 0 Zakarian, Mr. Mapriededer
1307 3 0 Zakarian, Mr. Ortin
1308 3 0 Zimmerman, Mr. Leo

sex age sibsp parch ticket fare cabin embarked boat \
0 female 29.0000 0 0 24160 211.3375 B5 S 2
1 male 0.9167 1 2 113781 151.5500 C22 C26 S 11
2 female 2.0000 1 2 113781 151.5500 C22 C26 S NaN
3 male 30.0000 1 2 113781 151.5500 C22 C26 S NaN
4 female 25.0000 1 2 113781 151.5500 C22 C26 S NaN
...
1304 female 14.5000 1 0 2665 14.4542 NaN C NaN
1305 female NaN 1 0 2665 14.4542 NaN C NaN
1306 male 26.5000 0 0 2656 7.2250 NaN C NaN
1307 male 27.0000 0 0 2670 7.2250 NaN C NaN
1308 male 29.0000 0 0 315082 7.8750 NaN S NaN

body home.dest
0 NaN St Louis, MO
1 NaN Montreal, PQ / Chesterville, ON
2 NaN Montreal, PQ / Chesterville, ON
3 135.0 Montreal, PQ / Chesterville, ON
4 NaN Montreal, PQ / Chesterville, ON
...
1304 328.0 NaN
1305 NaN NaN
1306 304.0 NaN
1307 NaN NaN
1308 NaN NaN

[1309 rows x 14 columns]

1.3. Tutorials 45

https://www.openml.org/d/40945

RuleXAI, Release v1.0.0

Dataset overwiev

[49]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 14 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 pclass 1309 non-null int64
1 survived 1309 non-null int64
2 name 1309 non-null object
3 sex 1309 non-null object
4 age 1046 non-null float64
5 sibsp 1309 non-null int64
6 parch 1309 non-null int64
7 ticket 1309 non-null object
8 fare 1308 non-null float64
9 cabin 295 non-null object
10 embarked 1307 non-null object
11 boat 486 non-null object
12 body 121 non-null float64
13 home.dest 745 non-null object
dtypes: float64(3), int64(4), object(7)
memory usage: 143.3+ KB

[50]: data[['survived', 'pclass']
] = data[['survived', 'pclass']].astype(str)

[51]: numeric_data = data[['age', 'sibsp', 'parch', 'fare', 'body']]
caterogical_data = data[['name', 'sex', 'ticket',

'cabin', 'embarked', 'boat', 'home.dest']]

[52]: numeric_data.describe()

[52]: age sibsp parch fare body
count 1046.000000 1309.000000 1309.000000 1308.000000 121.000000
mean 29.881135 0.498854 0.385027 33.295479 160.809917
std 14.413500 1.041658 0.865560 51.758668 97.696922
min 0.166700 0.000000 0.000000 0.000000 1.000000
25% 21.000000 0.000000 0.000000 7.895800 72.000000
50% 28.000000 0.000000 0.000000 14.454200 155.000000
75% 39.000000 1.000000 0.000000 31.275000 256.000000
max 80.000000 8.000000 9.000000 512.329200 328.000000

[53]: caterogical_data.describe()

[53]: name sex ticket cabin embarked boat \
count 1309 1309 1309 295 1307 486
unique 1307 2 929 186 3 27
top Kelly, Mr. James male CA. 2343 C23 C25 C27 S 13
freq 2 843 11 6 914 39

(continues on next page)

46 Chapter 1. Installation

RuleXAI, Release v1.0.0

(continued from previous page)

home.dest
count 745
unique 369
top New York, NY
freq 64

Data preprocessing

In the first stage of data preprocessing it was decided to only remove the columns for Passenger Name, ticket type,
cabin, embarked, boat, home.dest, body. Removing the Passenger Name columns is self-explanatory - in no way does
Passenger Name have any bearing on whether a person survived. It would only be possible to derive passenger status
from passenger name, as there are markings such as ‘Mr.’, ‘Mrs.’, ‘Miss.’, ‘Master.’. In case of tickets, the designations
for most tickets vary - 681 unique values out of 891 occurrences. One could extract some information from the tickets
from their designations (e.g., whether they begin with a number or a letter). However, you would have to consult
historical data to find out what the ticket designations mean. In the case of cabin designations, as many as 697 values
are missing - for this reason it was decided to remove the entire column, as it carries too little information. On the basis
of a similar analysis, the remaining mentioned columns were removed

Of course, the preliminary data analysis and preprocessing stage itself could have been even more extensive - exploring
the relationships between features, examining the impact of individual features, plotting graphs to better understand
the data. However, the main purpose of this notebook is not to analyze a given set of data in detail, but only to show
the possibilities of using the RuleXAI library. For this reason, some simplifications in the analysis have been decided.

[54]: data.drop(["name", "ticket", "cabin", "embarked", "boat", "home.dest", "body"], axis=1,␣
→˓inplace=True)
data.reset_index(inplace=True, drop=True)

data.head(5)

[54]: pclass survived sex age sibsp parch fare
0 1 1 female 29.0000 0 0 211.3375
1 1 1 male 0.9167 1 2 151.5500
2 1 0 female 2.0000 1 2 151.5500
3 1 0 male 30.0000 1 2 151.5500
4 1 0 female 25.0000 1 2 151.5500

Building black-box model - neural network

In order to demonstrate the possibility of using the RuleXAI library to explain black-box models, it was decided to use
the Titanic set to build a neural network to classify whether a given person survived or not. Then, with the help of the
RuleXAI library, an analysis will be performed to explain on what basis the neural network model makes decisions.

Since neural networks do not handle missing data and operate only on numerical data, it was necessary to fill in the
missing data, perform dummification and scaling.

[55]: from sklearn.preprocessing import MinMaxScaler

data.age = data.age.fillna(data.age.median())
data.fare = data.age.fillna(data.fare.median())

scaler = MinMaxScaler()
(continues on next page)

1.3. Tutorials 47

RuleXAI, Release v1.0.0

(continued from previous page)

data_dummies = pd.get_dummies(data.drop(["survived"], axis=1))
data_dummies = data_dummies.drop(["sex_male"], axis=1)
data_scaled = pd.DataFrame(scaler.fit_transform(data_dummies),index=data_dummies.index,
→˓columns=data_dummies.columns)

X = data_scaled
y = data.survived.astype(int)

X.head(5)

[55]: age sibsp parch fare pclass_1 pclass_2 pclass_3 \
0 0.361169 0.000 0.000000 0.361169 1.0 0.0 0.0
1 0.009395 0.125 0.222222 0.009395 1.0 0.0 0.0
2 0.022964 0.125 0.222222 0.022964 1.0 0.0 0.0
3 0.373695 0.125 0.222222 0.373695 1.0 0.0 0.0
4 0.311064 0.125 0.222222 0.311064 1.0 0.0 0.0

sex_female
0 1.0
1 0.0
2 1.0
3 0.0
4 1.0

[56]: from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42,
→˓)

Neural Network learning

[66]: from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Dropout, Input
from tensorflow.keras.callbacks import EarlyStopping

model = Sequential()

model.add(Input(shape=(X_train.shape[1],)))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation="relu"))
model.add(Dense(32, activation="relu"))
model.add(Dense(1, activation="sigmoid"))

model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])

early_stopping_callback = EarlyStopping(monitor='val_loss', patience=10)

history = model.fit(X_train.to_numpy(), y_train.to_numpy(), epochs=100, batch_size = 24,␣
→˓validation_split=0.2, callbacks=[early_stopping_callback])

Epoch 1/100
31/31 [==============================] - 0s 16ms/step - loss: 0.6153 - accuracy: 0.7254 -
→˓ val_loss: 0.5677 - val_accuracy: 0.7446

(continues on next page)

48 Chapter 1. Installation

RuleXAI, Release v1.0.0

(continued from previous page)

Epoch 2/100
31/31 [==============================] - 0s 6ms/step - loss: 0.4747 - accuracy: 0.7964 -␣
→˓val_loss: 0.5232 - val_accuracy: 0.7500
Epoch 3/100
31/31 [==============================] - 0s 7ms/step - loss: 0.4416 - accuracy: 0.8033 -␣
→˓val_loss: 0.5081 - val_accuracy: 0.7500
Epoch 4/100
31/31 [==============================] - 0s 5ms/step - loss: 0.4318 - accuracy: 0.8046 -␣
→˓val_loss: 0.5271 - val_accuracy: 0.7500
Epoch 5/100
31/31 [==============================] - 0s 6ms/step - loss: 0.4359 - accuracy: 0.8074 -␣
→˓val_loss: 0.4926 - val_accuracy: 0.7446
Epoch 6/100
31/31 [==============================] - 0s 6ms/step - loss: 0.4364 - accuracy: 0.8033 -␣
→˓val_loss: 0.4932 - val_accuracy: 0.7446
Epoch 7/100
31/31 [==============================] - 0s 6ms/step - loss: 0.4268 - accuracy: 0.8156 -␣
→˓val_loss: 0.4931 - val_accuracy: 0.7554
Epoch 8/100
31/31 [==============================] - 0s 7ms/step - loss: 0.4242 - accuracy: 0.8183 -␣
→˓val_loss: 0.4920 - val_accuracy: 0.7554
Epoch 9/100
31/31 [==============================] - 0s 7ms/step - loss: 0.4238 - accuracy: 0.8060 -␣
→˓val_loss: 0.4882 - val_accuracy: 0.7609
Epoch 10/100
31/31 [==============================] - 0s 6ms/step - loss: 0.4232 - accuracy: 0.8046 -␣
→˓val_loss: 0.4997 - val_accuracy: 0.7609
Epoch 11/100
31/31 [==============================] - 0s 6ms/step - loss: 0.4201 - accuracy: 0.8046 -␣
→˓val_loss: 0.4876 - val_accuracy: 0.7717
Epoch 12/100
31/31 [==============================] - 0s 6ms/step - loss: 0.4225 - accuracy: 0.8005 -␣
→˓val_loss: 0.4904 - val_accuracy: 0.7609
Epoch 13/100
31/31 [==============================] - 0s 6ms/step - loss: 0.4166 - accuracy: 0.8169 -␣
→˓val_loss: 0.5062 - val_accuracy: 0.7609
Epoch 14/100
31/31 [==============================] - 0s 7ms/step - loss: 0.4222 - accuracy: 0.8183 -␣
→˓val_loss: 0.4938 - val_accuracy: 0.7554
Epoch 15/100
31/31 [==============================] - 0s 7ms/step - loss: 0.4158 - accuracy: 0.8279 -␣
→˓val_loss: 0.5170 - val_accuracy: 0.7609
Epoch 16/100
31/31 [==============================] - 0s 5ms/step - loss: 0.4236 - accuracy: 0.8156 -␣
→˓val_loss: 0.4919 - val_accuracy: 0.7609
Epoch 17/100
31/31 [==============================] - 0s 5ms/step - loss: 0.4185 - accuracy: 0.8128 -␣
→˓val_loss: 0.5000 - val_accuracy: 0.7500
Epoch 18/100
31/31 [==============================] - 0s 6ms/step - loss: 0.4149 - accuracy: 0.8156 -␣
→˓val_loss: 0.4982 - val_accuracy: 0.7609
Epoch 19/100

(continues on next page)

1.3. Tutorials 49

RuleXAI, Release v1.0.0

(continued from previous page)

31/31 [==============================] - 0s 7ms/step - loss: 0.4131 - accuracy: 0.8210 -␣
→˓val_loss: 0.4961 - val_accuracy: 0.7717
Epoch 20/100
31/31 [==============================] - 0s 7ms/step - loss: 0.4136 - accuracy: 0.8156 -␣
→˓val_loss: 0.4820 - val_accuracy: 0.7717
Epoch 21/100
31/31 [==============================] - 0s 6ms/step - loss: 0.4162 - accuracy: 0.8169 -␣
→˓val_loss: 0.4970 - val_accuracy: 0.7717
Epoch 22/100
31/31 [==============================] - 0s 8ms/step - loss: 0.4184 - accuracy: 0.8169 -␣
→˓val_loss: 0.4944 - val_accuracy: 0.7772
Epoch 23/100
31/31 [==============================] - 0s 6ms/step - loss: 0.4112 - accuracy: 0.8224 -␣
→˓val_loss: 0.4861 - val_accuracy: 0.7717
Epoch 24/100
31/31 [==============================] - 0s 5ms/step - loss: 0.4156 - accuracy: 0.8183 -␣
→˓val_loss: 0.4895 - val_accuracy: 0.7772
Epoch 25/100
31/31 [==============================] - 0s 5ms/step - loss: 0.4107 - accuracy: 0.8087 -␣
→˓val_loss: 0.4933 - val_accuracy: 0.7717
Epoch 26/100
31/31 [==============================] - 0s 6ms/step - loss: 0.4077 - accuracy: 0.8183 -␣
→˓val_loss: 0.4903 - val_accuracy: 0.7717
Epoch 27/100
31/31 [==============================] - 0s 5ms/step - loss: 0.4141 - accuracy: 0.8128 -␣
→˓val_loss: 0.5159 - val_accuracy: 0.7772
Epoch 28/100
31/31 [==============================] - 0s 5ms/step - loss: 0.4117 - accuracy: 0.8197 -␣
→˓val_loss: 0.4859 - val_accuracy: 0.7717
Epoch 29/100
31/31 [==============================] - 0s 8ms/step - loss: 0.4089 - accuracy: 0.8238 -␣
→˓val_loss: 0.4802 - val_accuracy: 0.7554
Epoch 30/100
31/31 [==============================] - 0s 5ms/step - loss: 0.4084 - accuracy: 0.8197 -␣
→˓val_loss: 0.5109 - val_accuracy: 0.7717
Epoch 31/100
31/31 [==============================] - 0s 6ms/step - loss: 0.4086 - accuracy: 0.8251 -␣
→˓val_loss: 0.4889 - val_accuracy: 0.7717
Epoch 32/100
31/31 [==============================] - 0s 7ms/step - loss: 0.4055 - accuracy: 0.8183 -␣
→˓val_loss: 0.4891 - val_accuracy: 0.7609
Epoch 33/100
31/31 [==============================] - 0s 6ms/step - loss: 0.4055 - accuracy: 0.8156 -␣
→˓val_loss: 0.5027 - val_accuracy: 0.7826
Epoch 34/100
31/31 [==============================] - 0s 5ms/step - loss: 0.4099 - accuracy: 0.8224 -␣
→˓val_loss: 0.5104 - val_accuracy: 0.7609
Epoch 35/100
31/31 [==============================] - 0s 5ms/step - loss: 0.4055 - accuracy: 0.8156 -␣
→˓val_loss: 0.4831 - val_accuracy: 0.7609
Epoch 36/100
31/31 [==============================] - 0s 5ms/step - loss: 0.4027 - accuracy: 0.8197 -␣
→˓val_loss: 0.4873 - val_accuracy: 0.7663 (continues on next page)

50 Chapter 1. Installation

RuleXAI, Release v1.0.0

(continued from previous page)

Epoch 37/100
31/31 [==============================] - 0s 5ms/step - loss: 0.4069 - accuracy: 0.8265 -␣
→˓val_loss: 0.4992 - val_accuracy: 0.7663
Epoch 38/100
31/31 [==============================] - 0s 7ms/step - loss: 0.4013 - accuracy: 0.8251 -␣
→˓val_loss: 0.4923 - val_accuracy: 0.7717
Epoch 39/100
31/31 [==============================] - 0s 8ms/step - loss: 0.4010 - accuracy: 0.8265 -␣
→˓val_loss: 0.4875 - val_accuracy: 0.7500

[14]: model.save("./models/nn", save_format = 'h5')

Model evaluation on training and test set

[67]: from sklearn.metrics import balanced_accuracy_score, accuracy_score
import numpy as np

train_acc = np.round(accuracy_score(y_train, model.predict(X_train)>0.5),3)
train_bacc = np.round(balanced_accuracy_score(y_train, model.predict(X_train)>0.5),3)

print(f"NN model train accuracy: {train_acc}")
print(f"NN model train bacc: {train_bacc}")

test_acc = np.round(accuracy_score(y_test, model.predict(X_test)>0.5),3)
test_bacc = np.round(balanced_accuracy_score(y_test, model.predict(X_test)>0.5),3)

print(f"NN model test accuracy: {test_acc}")
print(f"NN model test bacc: {test_bacc}")

NN model train accuracy: 0.816
NN model train bacc: 0.793
NN model test accuracy: 0.809
NN model test bacc: 0.794

Since the purpose of the analysis is not to create the best possible black-box model, but only to show the possibility of
its explanation, it was concluded that the model obtaining a balanced accuracy of 0.793 on the training set and 0.794
on the test set is sufficient. Of course, testing other network architectures would yield better results, but that is not the
purpose of this notebook.

RuleXAI

The RuleXAI library enables the explanation of black-box models by approximating the black-box model with a rule
model. This is possible by replacing the decision variable in the dataset with decisions made by the network and
teaching the rule model on that dataset. The rule-based model will therefore learn to map the data set to the decisions
made by the black-box model. It is also worth noting that the rule-based model can then be trained on the original set
(containing nominal and missing attributes). Such a procedure will facilitate the analysis. Instead of the conditions
Sex_female = {0}, the condition set will have the condition Sex = {male}

[68]: import numpy as np

(continues on next page)

1.3. Tutorials 51

RuleXAI, Release v1.0.0

(continued from previous page)

y_train_nn_decisions = np.array(list(map(int, model.predict(X_train)>0.5)))
y_test_nn_decisions = np.array(list(map(int, model.predict(X_test)>0.5)))

y_train_nn_df = pd.DataFrame(y_train_nn_decisions, columns=["label"]).astype(str)

X_org = data.drop(["survived"], axis=1)
y_org = data.survived

X_train_org = X_org.loc[X_train.index,:]
X_test_org = X_org.loc[X_test.index,:]

X_train_org.reset_index(inplace=True, drop=True)
X_train_org.head(5)

[68]: pclass sex age sibsp parch fare
0 3 male 28.0 0 0 28.0
1 3 male 26.0 0 0 26.0
2 2 female 19.0 0 0 19.0
3 3 female 28.0 8 2 28.0
4 3 female 28.0 0 0 28.0

[101]: from rulexai.explainer import Explainer

explainer = Explainer(X = X_train,model_predictions = y_train_nn_df,type =
→˓"classification")

[102]: explainer.explain(X_org=X_train_org)

[102]: <rulexai.explainer.Explainer at 0x18b72d3a640>

The approach to explaining black-box models with rule models is often already considered as the explainability of such
models. When analyzing the resulting rules, certain conclusions can be drawn. The use of the RuleXAI library allows
to go a step further - obtaining information about the importance of features and specific ranges of these features. This
will enable a more in-depth analysis of the dataset and the black-box model.

Rules describing the black-box model

[91]: for rule in explainer.get_rules():
print(rule)

IF sex = {male} AND age = <8.5, 47.5) THEN label = {0}
IF sex = {male} AND age = <8.5, inf) THEN label = {0}
IF sex = {male} AND age = <4.5, 47.5) THEN label = {0}
IF pclass = {3} AND sibsp = <1.5, inf) AND age = <0.96, inf) THEN label = {0}
IF parch = <4.5, inf) THEN label = {0}
IF pclass = {3} AND sibsp = <0.5, inf) AND age = <28.25, inf) AND parch = <0.5, inf)␣
→˓THEN label = {0}
IF pclass = {3} AND age = <27.5, 44.5) AND parch = <0.5, inf) THEN label = {0}
IF sex = {female} AND sibsp = (-inf, 1.5) AND parch = (-inf, 2.5) THEN label = {1}
IF sex = {female} AND sibsp = (-inf, 2.5) AND parch = (-inf, 3.5) THEN label = {1}
IF age = (-inf, 0.96) THEN label = {1}
IF sibsp = (-inf, 2.5) AND age = (-inf, 4.5) THEN label = {1}
IF pclass = {1} AND sibsp = <1.5, inf) THEN label = {1}

(continues on next page)

52 Chapter 1. Installation

RuleXAI, Release v1.0.0

(continued from previous page)

IF pclass = {1} AND sibsp = <0.5, inf) AND age = <46.5, inf) AND parch = (-inf, 0.5)␣
→˓THEN label = {1}
IF sibsp = (-inf, 3.5) AND parch = (-inf, 4.5) AND age = (-inf, 60.25) THEN label = {1}

Quality of the black-box model approximation

[103]: rc = explainer.model.model

train_acc = np.round(accuracy_score(y_train_nn_decisions, rc.predict(X_train_org).
→˓astype(int)),3)
train_bacc = np.round(balanced_accuracy_score(y_train_nn_decisions, rc.predict(X_train_
→˓org).astype(int)),3)

print(f"Rule model train accuracy: {train_acc}")
print(f"Rule model train bacc: {train_bacc}")

test_acc = np.round(accuracy_score(y_test_nn_decisions, rc.predict(X_test_org).
→˓astype(int)),3)
test_bacc = np.round(balanced_accuracy_score(y_test_nn_decisions, rc.predict(X_test_org).
→˓astype(int)),3)

print(f"Rule model test accuracy: {test_acc}")
print(f"Rule model test bacc: {test_bacc}")

Rule model train accuracy: 0.971
Rule model train bacc: 0.968
Rule model test accuracy: 0.964
Rule model test bacc: 0.966

Rule condition importance

[94]: explainer.condition_importances_

[94]: 0 | conditions_names 0 | importances 1 | conditions_names 1 | importances
0 sex = {male} 2.506576 sex = {female} 1.095350
1 pclass = {3} 0.532272 age = (-inf, 0.96) 0.516234
2 parch = <4.5, inf) 0.506579 age = (-inf, 4.5) 0.449048
3 sibsp = <1.5, inf) 0.156118 pclass = {1} 0.428375
4 age = <27.5, 44.5) 0.131756 sibsp = (-inf, 2.5) 0.126061
5 age = <8.5, 47.5) 0.08452 sibsp = <0.5, inf) 0.111988
6 age = <4.5, 47.5) 0.07646 sibsp = <1.5, inf) 0.092592
7 age = <8.5, inf) 0.057054 age = <46.5, inf) 0.089966
8 age = <28.25, inf) 0.041569 sibsp = (-inf, 1.5) 0.031061
9 age = <0.96, inf) 0.026228 parch = (-inf, 2.5) 0.012163
10 sibsp = <0.5, inf) -0.014897 parch = (-inf, 0.5) 0.011806
11 parch = <0.5, inf) -0.052528 parch = (-inf, 3.5) 0.011632
12 - - sibsp = (-inf, 3.5) 0.010848
13 - - parch = (-inf, 4.5) 0.003102
14 - - age = (-inf, 60.25) 0.002035

Looking at the ranking of conditions obtained with the help of the RuleXAI library, it can be noticed that the greatest
influence on the decision made by the black-box model as to whether a given person survived or not was gender. The

1.3. Tutorials 53

RuleXAI, Release v1.0.0

most important condition indicating that the person survived is Sex = {female}, and the most important condition
indicating that the person did not survive is Sex = {male}. It is intuitive and logical - the first women were rescued.
Then it can be seen that the age of the person had a big impact on whether the person survived - children aged 0 to 4.5
had a greater chance of survival. Looking at the ranking on the impact of conditions on the fact that a given person
did not survive, it can be seen that apart from the fact that the person was a man, it was also influenced by the fact that
they traveled in 3rd class - it is also consistent with historical knowledge and logic - the first rescued there were more
affluent people.

Feature importance

[105]: explainer.feature_importances_

[105]: 0 | attributes 0 | importances 1 | attributes 1 | importances
0 sex 2.506576 sex 1.095350
1 pclass 0.532272 age 1.057283
2 parch 0.454051 pclass 0.428375
3 age 0.417587 sibsp 0.372549
4 sibsp 0.141221 parch 0.038703

Looking at the global ranking of features importance, it can be seen that the most important features that influenced
whether a person survived or not were gender, age, and the class they traveled. It is intuitive.

Local explainability

[75]: y_test_nn_df = pd.DataFrame(y_test_nn_decisions, columns=["label"])
X_test_org.reset_index(inplace=True, drop=True)

local_explainability = explainer.local_explainability(X_test_org.iloc[10, :], y_test_nn_
→˓df.iloc[10, :], plot = True)

Example:
pclass 3
sex male
age 28.0
sibsp 8
parch 2
fare 28.0
label 0
Name: 10, dtype: object

Rules that covers this example:
IF sex = {male} AND age = <8.5, 47.5) THEN label = {0}
IF sex = {male} AND age = <8.5, inf) THEN label = {0}
IF sex = {male} AND age = <4.5, 47.5) THEN label = {0}
IF pclass = {3} AND sibsp = <1.5, inf) AND age = <0.96, inf) THEN label = {0}
IF pclass = {3} AND age = <27.5, 44.5) AND parch = <0.5, inf) THEN label = {0}

Importances of the conditions from rules covering the example
0 | conditions_names 0 | importances

0 sex = {male} 2.506576
1 pclass = {3} 0.532272
2 sibsp = <1.5, inf) 0.156118

(continues on next page)

54 Chapter 1. Installation

RuleXAI, Release v1.0.0

(continued from previous page)

3 age = <27.5, 44.5) 0.131756
4 age = <8.5, 47.5) 0.08452
5 age = <4.5, 47.5) 0.07646
6 age = <8.5, inf) 0.057054
7 age = <0.96, inf) 0.026228
8 parch = <0.5, inf) -0.052528

Looking at the local explainability for an example from a test set, returned by the RuleXAI library, it can be seen what
rules explaining the black-box model cover the given example. The chart of the importance of the conditions also shows
that the condition Sex = {male} had the greatest influence on the model making such a decision. Subsequently, the fact
that a given person did not survive was due to the fact that they traveled 3rd class and had more than 1 relative on board

SHAP

In order to compare the results and conclusions of the explainability of the black-box model with the help of the
RuleXAI library, it was decided to explain the model also with the help of the SHAP library [https://shap.readthedocs.
io/en/latest/index.html]. The SHAP library is one of the currently most popular and widely used libraries for black-box
model explainability.

[106]: import shap
shap.initjs()

<IPython.core.display.HTML object>

[107]: explainer = shap.DeepExplainer(model,X_train)
shap_values = explainer.shap_values(X_train.values)

1.3. Tutorials 55

https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html

RuleXAI, Release v1.0.0

Global ranking

[108]: shap.summary_plot(shap_values[0], X_train)

Comparing the ranking obtained using the SHAP library with the rankings obtained using the RuleXAI library, similar
conclusions can be reached. The biggest influence on whether a person survived was whether person was female or
not. The next most important attributes concern which class the person traveled in. These conclusions are in line with
those drawn on the basis of the ranking obtained with the RuleXAI library.

Local explainability

[109]: shap_values = explainer.shap_values(X_test.values)
shap.plots.waterfall(shap.Explanation(values=shap_values[0][0],

base_values=np.array(explainer.expected_value)[0],
data=X_test.iloc[10],
feature_names=X_test.columns.tolist()))

56 Chapter 1. Installation

RuleXAI, Release v1.0.0

Comparing the local explainability for the same example obtained using the RuleXAI library and SHAP, similar
conclusions can be made: the greatest influence on the decision made by the model for this example was that the
person was male. This was followed by the influence that the person was traveling 3rd class.
Care must be taken when interpreting this graph as the input values of the black-box model, were scaled.

1.3.5 Dataset transformation

The RuleXAI library can also be used to transform a dataset. Often datasets contain missing values and nominal values.
Most available algorithms do not support either missing values or nominal values. Many algorithms require the data to
be rescaled beforehand. The RuleXAI library is able to convert a dataset with nominal and missing values into a binary
dataset containing as attributes the conditions describing the dataset and as values “1” when the condition is satisfied
for the example and “0” when the condition is not satisfied.

The data used in this notebook comes from https://sci2s.ugr.es/keel/missing.php?order=mis#sub2. It is an Australian
dataset that has 14 attributes: 8 numeric and 6 nominal and 690 examples. 70% of this dataset are missing values. The
attributes of this dataset are described below.

@relation australian+MV
@attribute A1 {0, 1}
@attribute A2 real[16.0,8025.0]
@attribute A3 real[0.0,26335.0]
@attribute A4 {1, 2, 3}
@attribute A5 integer[1,14]
@attribute A6 integer[1,9]
@attribute A7 real[0.0,14415.0]

1.3. Tutorials 57

https://sci2s.ugr.es/keel/missing.php?order=mis#sub2

RuleXAI, Release v1.0.0

@attribute A8 {0, 1}
@attribute A9 {0, 1}
@attribute A10 integer[0,67]
@attribute A11 {0, 1}
@attribute A12 {1, 2, 3}
@attribute A13 integer[0,2000]
@attribute A14 integer[1,100001]
@attribute Class {0,1}
@inputs A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14
@output Class
@data

Data load

[1]: import pandas as pd
import numpy as np

train_df = pd.read_csv("./data/australian_train.csv")
test_df = pd.read_csv("./data/australian_test.csv")

train_df[["A1","A4", "A8", "A9", "A11", "A12", "Class"]] = train_df[["A1","A4", "A8", "A9
→˓", "A11", "A12", "Class"]].astype(str)
test_df[["A1","A4", "A8", "A9", "A11", "A12", "Class"]] = test_df[["A1","A4", "A8", "A9",
→˓ "A11", "A12", "Class"]].astype(str)

for column in train_df.select_dtypes('object').columns.tolist():
train_df[column] = train_df[column].apply(lambda x: x.split(".")[0]).replace({"nan":␣

→˓None})
test_df[column] = test_df[column].apply(lambda x: x.split(".")[0]).replace({"nan":␣

→˓None})

[2]: train_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 621 entries, 0 to 620
Data columns (total 15 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 A1 559 non-null object
1 A2 569 non-null float64
2 A3 554 non-null float64
3 A4 541 non-null object
4 A5 568 non-null float64
5 A6 556 non-null float64
6 A7 559 non-null float64
7 A8 560 non-null object
8 A9 567 non-null object
9 A10 563 non-null float64
10 A11 561 non-null object
11 A12 549 non-null object
12 A13 558 non-null float64

(continues on next page)

58 Chapter 1. Installation

RuleXAI, Release v1.0.0

(continued from previous page)

13 A14 561 non-null float64
14 Class 621 non-null object
dtypes: float64(8), object(7)
memory usage: 72.9+ KB

[3]: test_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 69 entries, 0 to 68
Data columns (total 15 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 A1 69 non-null object
1 A2 69 non-null float64
2 A3 69 non-null float64
3 A4 69 non-null object
4 A5 69 non-null float64
5 A6 69 non-null float64
6 A7 69 non-null float64
7 A8 69 non-null object
8 A9 69 non-null object
9 A10 69 non-null float64
10 A11 69 non-null object
11 A12 69 non-null object
12 A13 69 non-null float64
13 A14 69 non-null float64
14 Class 69 non-null object
dtypes: float64(8), object(7)
memory usage: 8.2+ KB

[4]: train_org = train_df.copy()
test_org = test_df.copy()

Data preprocessing

• original data

[5]: train_df.head(5)

[5]: A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 \
0 0 2958.0 175.0 1 4.0 4.0 125.0 0 None 0.0 1 2 280.0
1 0 NaN 115.0 1 5.0 3.0 0.0 1 1 11.0 1 None 0.0
2 1 2017.0 817.0 2 6.0 4.0 196.0 1 1 NaN 0 2 60.0
3 1 1742.0 65.0 2 3.0 4.0 125.0 0 None 0.0 0 2 NaN
4 None 5867.0 446.0 2 11.0 8.0 304.0 1 1 6.0 0 2 43.0

A14 Class
0 1.0 0
1 1.0 1
2 159.0 1
3 101.0 0
4 561.0 1

1.3. Tutorials 59

RuleXAI, Release v1.0.0

• imputation of missing values

[6]: cateogry_columns=train_df.select_dtypes('object').columns.tolist()
number_columns=train_df.select_dtypes('number').columns.tolist()

for column in train_df:
if train_df[column].isnull().any():

if(column in cateogry_columns):
train_df[column].fillna(train_df[column].mode()[0], inplace=True)

else:
train_df[column].fillna(train_df[column].mean(), inplace=True)

[7]: train_df.head(5)

[7]: A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 \
0 0 2958.000000 175.0 1 4.0 4.0 125.0 0 0 0.00000 1 2
1 0 2693.896309 115.0 1 5.0 3.0 0.0 1 1 11.00000 1 2
2 1 2017.000000 817.0 2 6.0 4.0 196.0 1 1 2.49556 0 2
3 1 1742.000000 65.0 2 3.0 4.0 125.0 0 0 0.00000 0 2
4 1 5867.000000 446.0 2 11.0 8.0 304.0 1 1 6.00000 0 2

A13 A14 Class
0 280.000000 1.0 0
1 0.000000 1.0 1
2 60.000000 159.0 1
3 185.802867 101.0 0
4 43.000000 561.0 1

• one hot encoding

[]: data = pd.concat([train_df, test_df], axis = 0)
data.reset_index(drop=True,inplace=True)
data_with_dummies = pd.get_dummies(data.drop(["Class"], axis=1))

train_df_encoded = data_with_dummies[:train_df.shape[0]]
train_df_encoded["Class"] = data[:train_df.shape[0]]["Class"]

test_df_encoded = data_with_dummies[train_df.shape[0]:]
test_df_encoded["Class"] = data[train_df.shape[0]:]["Class"]

[9]: train_df_encoded.head(5)

[9]: A2 A3 A5 A6 A7 A10 A13 A14 A1_0 \
0 2958.000000 175.0 4.0 4.0 125.0 0.00000 280.000000 1.0 1
1 2693.896309 115.0 5.0 3.0 0.0 11.00000 0.000000 1.0 1
2 2017.000000 817.0 6.0 4.0 196.0 2.49556 60.000000 159.0 0
3 1742.000000 65.0 3.0 4.0 125.0 0.00000 185.802867 101.0 0
4 5867.000000 446.0 11.0 8.0 304.0 6.00000 43.000000 561.0 0

A1_1 ... A8_0 A8_1 A9_0 A9_1 A11_0 A11_1 A12_1 A12_2 A12_3 Class
0 0 ... 1 0 1 0 0 1 0 1 0 0
1 0 ... 0 1 0 1 0 1 0 1 0 1
2 1 ... 0 1 0 1 1 0 0 1 0 1
3 1 ... 1 0 1 0 1 0 0 1 0 0

(continues on next page)

60 Chapter 1. Installation

RuleXAI, Release v1.0.0

(continued from previous page)

4 1 ... 0 1 0 1 1 0 0 1 0 1

[5 rows x 23 columns]

• normalization

[10]: from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

train_df_encoded_and_scaled = train_df_encoded.copy()
train_df_encoded_and_scaled[['A2','A3','A5','A6', 'A7', 'A10', 'A13', 'A14']] = scaler.
→˓fit_transform(train_df_encoded[['A2','A3','A5','A6', 'A7', 'A10', 'A13', 'A14']])

test_df_encoded_and_scaled = test_df_encoded.copy()
test_df_encoded_and_scaled[['A2','A3','A5','A6', 'A7', 'A10', 'A13', 'A14']] = scaler.
→˓transform(test_df_encoded[['A2','A3','A5','A6', 'A7', 'A10', 'A13', 'A14']])

[11]: train_df_encoded_and_scaled.head(5)

[11]: A2 A3 A5 A6 A7 A10 A13 \
0 0.182967 -0.348773 -0.952571 -0.356525 -0.240176 -0.518373 5.508121e-01
1 0.000000 -0.370201 -0.667503 -0.887967 -0.331488 1.766525 -1.086471e+00
2 -0.468944 -0.119484 -0.382434 -0.356525 -0.188311 0.000000 -7.356248e-01
3 -0.659460 -0.388059 -1.237640 -0.356525 -0.240176 -0.518373 1.661943e-16
4 2.198282 -0.251986 1.042910 1.769244 -0.109417 0.727935 -8.350313e-01

A14 A1_0 A1_1 ... A8_0 A8_1 A9_0 A9_1 A11_0 A11_1 A12_1 \
0 -0.196556 1 0 ... 1 0 1 0 0 1 0
1 -0.196556 1 0 ... 0 1 0 1 0 1 0
2 -0.166737 0 1 ... 0 1 0 1 1 0 0
3 -0.177684 0 1 ... 1 0 1 0 1 0 0
4 -0.090868 0 1 ... 0 1 0 1 1 0 0

A12_2 A12_3 Class
0 1 0 0
1 1 0 1
2 1 0 1
3 1 0 0
4 1 0 1

[5 rows x 23 columns]

[12]: X_train = train_df_encoded_and_scaled.drop(columns = "Class")
y_train =train_df_encoded_and_scaled["Class"]

X_test = test_df_encoded_and_scaled.drop(columns = "Class")
y_test = test_df_encoded_and_scaled["Class"]

1.3. Tutorials 61

RuleXAI, Release v1.0.0

Building a Random Forest model on a preprocessed dataset

[13]: from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import balanced_accuracy_score

clf = RandomForestClassifier(random_state=42)

clf.fit(X_train, y_train)

[13]: RandomForestClassifier(random_state=42)

Balanced accuracy on training set

[14]: balanced_accuracy_score(y_train,clf.predict(X_train))

[14]: 1.0

Balanced accuracy on test set

[15]: balanced_accuracy_score(y_test,clf.predict(X_test))

[15]: 0.8153846153846154

Using RuleXAI to transform the original set

[16]: X_train_org = train_org.drop(columns = "Class")
y_train_org = train_org["Class"]

X_test_org = test_org.drop(columns = "Class")
y_test_org = test_org["Class"]

[17]: X_train_org.head(5)

[17]: A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 \
0 0 2958.0 175.0 1 4.0 4.0 125.0 0 None 0.0 1 2 280.0
1 0 NaN 115.0 1 5.0 3.0 0.0 1 1 11.0 1 None 0.0
2 1 2017.0 817.0 2 6.0 4.0 196.0 1 1 NaN 0 2 60.0
3 1 1742.0 65.0 2 3.0 4.0 125.0 0 None 0.0 0 2 NaN
4 None 5867.0 446.0 2 11.0 8.0 304.0 1 1 6.0 0 2 43.0

A14
0 1.0
1 1.0
2 159.0
3 101.0
4 561.0

[18]: from rulexai.explainer import Explainer

explainer = Explainer(X = X_train_org,model_predictions = y_train_org, type =
→˓"classification").explain()

62 Chapter 1. Installation

RuleXAI, Release v1.0.0

[19]: X_train_tranformed = explainer.fit_transform(X_train_org, selector=None)

[20]: X_train_tranformed.head(5)

[20]: A2 = <19.0, 7037.5) A8 = {0} A10 = (-inf, 10.5) A13 = (-inf, 216.0) \
0 1 1 1 0
1 0 0 0 1
2 1 0 0 1
3 1 1 1 0
4 1 0 1 1

A5 = (-inf, 1.5) A2 = <2445.5, 4429.0) A5 = (-inf, 3.5) A9 = {0} \
0 0 1 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 1 0
4 0 0 0 0

A2 = <1816.5, 3779.0) A13 = <110.0, inf) ... A6 = <2.0, inf) \
0 1 1 ... 1
1 0 0 ... 1
2 1 0 ... 1
3 0 0 ... 1
4 0 0 ... 1

A7 = <168.0, inf) A2 = <29.5, inf) A3 = (-inf, 12.5) A5 = <7.5, inf) \
0 0 1 0 0
1 0 0 0 0
2 1 1 0 0
3 0 1 0 0
4 1 1 0 1

A14 = (-inf, 1069.5) A3 = (-inf, 1080.0) A5 = <6.5, inf) \
0 1 1 0
1 1 1 0
2 1 1 0
3 1 1 0
4 1 1 1

A13 = (-inf, 591.5) A6 = <3.5, inf)
0 1 1
1 1 0
2 1 1
3 0 1
4 1 1

[5 rows x 99 columns]

1.3. Tutorials 63

RuleXAI, Release v1.0.0

Building a Random Forest model on a prepared dataset by RuleXAI

[21]: from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(random_state=42)

clf.fit(X_train_tranformed, y_train_org)

[21]: RandomForestClassifier(random_state=42)

[22]: X_test_transformed = explainer.transform(X_test_org)

Balanced accuracy on training set

[23]: balanced_accuracy_score(y_train_org,clf.predict(X_train_tranformed))

[23]: 1.0

Balanced accuracy on test set

[24]: balanced_accuracy_score(y_test_org,clf.predict(X_test_transformed))

[24]: 0.844871794871795

Comparing the results obtained with RandomForest on the preprocessed original set (imputation, dummification, nor-
malization) and on the original set transformed with RuleXAI, it can be seen that these results are similar.

64 Chapter 1. Installation

INDEX

C
condition_importances_

(rulexai.explainer.Explainer attribute), 6
condition_importances_

(rulexai.explainer.RuleExplainer attribute), 4

E
explain() (rulexai.explainer.Explainer method), 7
explain() (rulexai.explainer.RuleExplainer method), 4
Explainer (class in rulexai.explainer), 6

F
feature_importances_ (rulexai.explainer.Explainer

attribute), 6
feature_importances_

(rulexai.explainer.RuleExplainer attribute), 4
fit_transform() (rulexai.explainer.Explainer

method), 7
fit_transform() (rulexai.explainer.RuleExplainer

method), 4

G
get_rules() (rulexai.explainer.Explainer method), 8
get_rules() (rulexai.explainer.RuleExplainer method),

5
get_rules_covering_example()

(rulexai.explainer.Explainer method), 8
get_rules_covering_example()

(rulexai.explainer.RuleExplainer method),
5

get_rules_with_basic_conditions()
(rulexai.explainer.Explainer method), 8

get_rules_with_basic_conditions()
(rulexai.explainer.RuleExplainer method),
5

L
local_explainability()

(rulexai.explainer.Explainer method), 8
local_explainability()

(rulexai.explainer.RuleExplainer method),
6

P
plot_importances() (rulexai.explainer.Explainer

method), 8
plot_importances() (rulexai.explainer.RuleExplainer

method), 6

R
RuleExplainer (class in rulexai.explainer), 3

T
transform() (rulexai.explainer.Explainer method), 8
transform() (rulexai.explainer.RuleExplainer method),

6

65

	Installation
	Theoretical basis
	Code documentation
	Tutorials
	RuleXAI
	Overview
	I. Initial data analysis and preprocesing
	1. Data load
	2. Dataset overwiev
	3. Data preprocessing

	II. Use of a decision tree from sklearn
	1. Data preparation for decision tree
	2. Data split for training and test datasets
	3. Building and testing the model
	4. Determination of the feature importance from the decision tree in the sklearn package
	5. Model generation based on top 50% of features

	III. Analysis of the decision tree model from the previous point with RuleXAI
	1. RuleXAI initialisation
	2. Presentation of the rules derived from the decision tree
	3. Importance of features determined by RuleXAI
	4. Model generation based on top 50% of features for each class from RuleXAI
	5. Further analysis using RuleXAI
	5.1 Rule condition importance
	5.2 Local explainability
	5.3 Creation of a binary dataset
	5.4 Creation of a binary dataset based on top conditions
	5.5 Condition importance based on non-overlapping rule conditions
	5.3 Presentation of the rules consisting of non-overlapping base conditions

	IV. Using the RuleKit library - a versatile tool for rule learning - to generate rules
	1. Data preparation for RuleKit
	2. Data split for training and test datasets
	3. Building and testing the model
	4. Presentation of the rules obtained by RuleKit

	V. Analysis with RuleXAI of rules derived with RuleKit
	1. Initialisation and explaination
	2. Feature importance determined by RuleXAI
	3. Rule condition importance
	4. Creation of a binary dataset based on top conditions

	VI. Summary

	CPU
	Read data
	Train RuleKit model
	Rules

	RuleXAI
	Feature importance
	Condition importance
	Local explainability

	GBSG2
	Read data
	Train RuleKit model
	Rules

	RuleXAI
	Feature importance
	Condition importance
	Local explainability

	Black-box model aproximation
	Data load
	Dataset overwiev
	Data preprocessing
	Building black-box model - neural network
	Model evaluation on training and test set

	RuleXAI
	Rule condition importance
	Feature importance
	Local explainability

	SHAP
	Global ranking
	Local explainability

	Dataset transformation
	Data load
	Data preprocessing
	Building a Random Forest model on a preprocessed dataset
	Using RuleXAI to transform the original set
	Building a Random Forest model on a prepared dataset by RuleXAI

	Index

