RuleXAI

Release v1.0.0

Macha Dawid

Jul 08, 2022

CONTENTS:

1 Installation3Index65

Welcome to RuleXAI's documentation!

RuleXAI is a rule-based aproach to explain the output of any machine learning model. It is suitable for classification, regression and survival tasks. Theoretical basis of the rule analysis methods implemented in the RuleXAI package can be found in Theoretical basis section.

CHAPTER

ONE

INSTALLATION

RuleXAI can be installed from PyPI:

pip install rulexai

1.1 Theoretical basis

Click here to view document describing theoretical basis of the rule analysis methods implemented in the RuleXAI package

1.2 Code documentation

class rulexai.explainer.**RuleExplainer**(model, X: DataFrame, y: Union[DataFrame, Series], type: str = 'classification')

Parameters

• model

(Model = Union[RuleClassifier, RuleRegressor, SurvivalRules, CN2UnorderedClassifier, CN2SDUnorderedClassifier, DecisionTreeClassifier, DecisionTreeRegressor, SurvivalTree, List[str]])-

Model to be analyzed. RuleXai supports the following Rule models:

- RuleKit(https://adaa-polsl.github.io/RuleKit-python/): RuleClassifier, RuleRegressor, SurvivalRules
- Orange (https://orangedatamining.com/): CN2UnorderedClassifier. CN2SDUnorderedClassifier

It can also extract rules from decision trees:

- scikit-learn (https://scikit-learn.org/stable/): DecisionTreeClassifier, DecisionTreeRegressor
- scikit-survival (https://scikit-survival.readthedocs.io/en/stable/): SurvivalTree

Or you can provide a list of rules as:

- classification:
 - IF attribute1 = (-inf, value) AND ... AND attribute2 = <value1, value2) THEN label_atrribute = {class_name}

- regression:

IF attribute1 = (-inf, value) AND ... AND attribute2 = <value1, value2) THEN target_attribute = {value}

- survival:

IF attribute1 = (-inf, value) AND ... AND attribute2 = <value1, value2) THEN survival_status_attribute = {survival_status}

- X (pd.DataFrame) The training dataset used during provided model training
- **y** (*Union[pd.DataFrame, pd.Series]*) The target values (class labels, real number, survival status) used during provided model training
- type (str = None) -

The type of problem that the provided model solves. You can choose between:

- "classification"
- "regression"
- "survival"

default: "classification"

condition_importances_

Computed conditions importances

Type

pd.DataFrame

feature_importances_

Feature importances computed base on conditions importances

Туре

pd.DataFrame

explain(measure: str = 'C2', basic_conditions: bool = False)

Compute conditions importances. The importances of a conditions are computed base on:

Marek Sikora: Redefinition of Decision Rules Based on the Importance of Elementary Conditions Evaluation. Fundam. Informaticae 123(2): 171-197 (2013)

https://dblp.org/rec/journals/fuin/Sikora13.html

Parameters

- **measure** (*str*) Specifies the measure that is used to evaluate the quality of the rules. Possible measures for classification and regression problem are: C2, Lift, Correlation. Default: C2. It is not possible to select a measure for the survival problem, the LogRank test is used by default
- **basic_conditions** (*bool*) Specifies whether to evaluate the conditions contained in the input rules, or to break the conditions in the rules into base conditions so that individual conditions do not overlap

Returns

self - Fitted explainer with calculated conditions

Return type

Explainer

fit_transform(*X: DataFrame, selector=None, y=None, POS=None*) \rightarrow DataFrame

Creates a dataset based on given dataset in which the examples, instead of being described by the original attributes, will be described with the specified conditions - it will be a set with binary attributes determining whether a given example meets a given condition. It can be considered as kind of dummification. Thanks to this function you can discretize data and get rid of missing values. It can be used as prestep for others algorithms.

Parameters

- **X** (*pd*.*DataFrame*) The input samples from which you want to create binary dataset. Should have the same columns and columns order as X specified when creating Explainer
- **selector** (*string/float*) Specifies on what basis to select the conditions from the rules that will be included as attributes in the transformed set. If None all conditions will be included in the transformed set. If number 0-1 percent of the most important conditions will be selected based on condition importance ranking. If "reduct" the reduct of the conditions set will be selected. Preferably, the option with the percentage of most important conditions will be selected.
- **y** (Union[pd.DataFrame, pd.Series]) Only if selector = "reduct". The target values for input sample, used in the determination of the reduct
- **POS** (*float*) Only if selector = "reduct".Target reduct POS

Returns

X_transformed – Transformed dataset

Return type

pd.DataFrame

get_rules()

Return rules from model

Returns rules – Rules from model

Return type

List[str]

get_rules_covering_example(x: DataFrame, y: Union[DataFrame, Series]) \rightarrow List[str]

Return rules that covers the given example

Parameters

- **x** (*pd*.*DataFrame*) The input sample.
- y (Union [pd.DataFrame, pd.Series]) The target values for input sample.

Returns

rules – Rules that covers the given example

Return type

List[str]

get_rules_with_basic_conditions()

Return rules from model with conditions broken down into base conditions so that individual conditions do not overlap

Returns

rules – Rules from the model containing the base conditions

Return type

List[str]

local_explainability(x: DataFrame, y: Union[DataFrame, Series], plot: bool = False)

Displays information about the local explanation of the example: the rules that cover the given example and the importance of the conditions contained in these rules

Parameters

- **x** (*pd*.*DataFrame*) The input sample.
- y (Union [pd.DataFrame, pd.Series]) The target values for input sample.
- **plot** (*bool*) If True the importance of the conditions will also be shown in the chart. Default: False

plot_importances(importances: DataFrame)

Plot importances :param importances: Feature/Condition importances to plot. :type importances: pd.DataFrame

transform(*X: DataFrame*) \rightarrow DataFrame

Creates a dataset based on given dataset in which the examples, instead of being described by the original attributes, will be described with the specified conditions - it will be a set with binary attributes determining whether a given example meets a given condition. It can be considered as kind of dummification. Thanks to this function you can discretize data and get rid of missing values. It can be used as prestep for others algorithms.

Parameters

X (*pd.DataFrame*) – The input samples from which you want to create binary dataset. Should have the same columns and columns order as X given in fit_transform

Returns

 $X_transformed$ – Transformed dataset

Return type

pd.DataFrame

class rulexai.explainer.Explainer(X: DataFrame, model_predictions: Union[DataFrame, Series], type: str = 'classification')

Parameters

- X (pd.DataFrame) The training dataset used during provided model training
- model_predictions (Union[pd.DataFrame, pd.Series]) The training dataset used during provided model training
- type (str) –

The type of problem that the provided model solves. You can choose between:

- "classification"
- "regression"

default: "classification"

condition_importances_

Computed conditions importances on given dataset

Туре

pd.DataFrame

feature_importances_

Feature importances computed base on conditions importances

Туре

pd.DataFrame

explain(measure: str = 'C2', basic_conditions: bool = False, X_org=None)

Compute conditions importances. The importances of a conditions are computed base on:

Marek Sikora: Redefinition of Decision Rules Based on the Importance of Elementary Conditions Evaluation. Fundam. Informaticae 123(2): 171-197 (2013)

https://dblp.org/rec/journals/fuin/Sikora13.html

Parameters

- **measure** (*str*) Specifies the measure that is used to evaluate the quality of the rules. Possible measures for classification and regression problem are: C2, Lift, Correlation. Default: C2. It is not possible to select a measure for the survival problem, the LogRank test is used by default
- **basic_conditions** (*bool*) Specifies whether to evaluate the conditions contained in the input rules, or to break the conditions in the rules into base conditions so that individual conditions do not overlap
- **X_org** The dataset on which the rule-based model should be built. It can be the set on which the black-box model was learned or this set before preprocessing (imputation of missing values, dummification, scaling), because such a set can be handled by the rule model

Returns

self - Fitted explainer with calculated conditions

Return type

Explainer

fit_transform(*X: DataFrame, selector=None, y=None, POS=None*) → DataFrame

Creates a dataset based on given dataset in which the examples, instead of being described by the original attributes, will be described with the specified conditions - it will be a set with binary attributes determining whether a given example meets a given condition. It can be considered as kind of dummification. Thanks to this function you can discretize data and get rid of missing values. It can be used as prestep for others algorithms.

Parameters

- **X** (*pd.DataFrame*) The input samples from which you want to create binary dataset. Should have the same columns and columns order as X specified when creating Explainer
- **selector** (*string/float*) Specifies on what basis to select the conditions from the rules that will be included as attributes in the transformed set. If None all conditions will be included in the transformed set. If number 0-1 percent of the most important conditions will be selected based on condition importance ranking. If "reduct" the reduct of the conditions set will be selected. Preferably, the option with the percentage of most important conditions will be selected.
- **y** (*Union[pd.DataFrame, pd.Series]*) Only if selector = "reduct".The target values for input sample, used in the determination of the reduct
- **POS** (*float*) Only if selector = "reduct".Target reduct POS

Returns X_transformed – Transformed dataset

Return type pd.DataFrame

get_rules()

Return rules from model

Returns

rules – Rules from model

Return type List[str]

List[su]

 $get_rules_covering_example(x: DataFrame, y: Union[DataFrame, Series]) \rightarrow List[str]$

Return rules that covers the given example

Parameters

• **x** (*pd.DataFrame*) – The input sample.

• y (Union [pd.DataFrame, pd.Series]) - The target values for input sample.

Returns

rules – Rules that covers the given example

Return type List[str]

get_rules_with_basic_conditions()

Return rules from model with conditions broken down into base conditions so that individual conditions do not overlap

Returns

rules - Rules from the model containing the base conditions

Return type List[str]

local_explainability(x: DataFrame, y: Union[DataFrame, Series], plot: bool = False)

Displays information about the local explanation of the example: the rules that cover the given example and the importance of the conditions contained in these rules

Parameters

- **x** (*pd*.*DataFrame*) The input sample.
- y (Union [pd.DataFrame, pd.Series]) The target values for input sample.
- **plot** (*boo1*) If True the importance of the conditions will also be shown in the chart. Default: False

plot_importances(importances: DataFrame)

Plot importances :param importances: Feature/Condition importances to plot. :type importances: pd.DataFrame

transform(*X: DataFrame*) \rightarrow DataFrame

Creates a dataset based on given dataset in which the examples, instead of being described by the original attributes, will be described with the specified conditions - it will be a set with binary attributes determining whether a given example meets a given condition. It can be considered as kind of dummification. Thanks to this function you can discretize data and get rid of missing values. It can be used as prestep for others algorithms.

Parameters

X (*pd.DataFrame*) – The input samples from which you want to create binary dataset. Should have the same columns and columns order as X given in fit_transform

Returns

 $X_transformed$ – Transformed dataset

Return type

pd.DataFrame

1.3 Tutorials

1.3.1 RuleXAI

In this notebook, the data from https://www.kaggle.com/c/titanic is analysed to show the advantages and possibilities of using the RuleXAI library for in-depth analysis of the dataset. It is a popular set, often used in various types of examples, therefore it was decided to use it in this analysis.

Overview

```
I. Initial data analysis and preprocesing
II. Use of a decision tree from sklearn
III. Analysis of the decision tree model from the previous point with RuleXAI
IV. Using the RuleKit library - a versatile tool for rule learning - to generate rule
V. Analysis with RuleXAI of rules derived with RuleKit
VI. Summary
```

I. Initial data analysis and preprocesing

1. Data load

The data used in this analysis comes from the kaggle competition (https://www.kaggle.com/c/titanic). Two datasets were published as part of this competition:

- training set (train.csv)

- test set (test.csv)

According to the competition rules: "The training set should be used to build your machine learning models. For the training set, we provide the outcome (also known as the "ground truth") for each passenger. Your model will be based on "features" like passengers' gender and class. You can also use feature engineering to create new features. The test set should be used to see how well your model performs on unseen data. For the test set, we do not provide the ground truth for each passenger. It is your job to predict these outcomes. For each passenger in the test set, use the model you trained to predict whether or not they survived the sinking of the Titanic."

As the purpose of this analysis is to present the RuleXAI library not to take part in the competition, it was decided to use only the data contained in the training set in the further analysis. Therefore, the data from the train.csv file can be split into training and test data, so that it will be possible to evaluate the results obtained without participating in the competition.

[1]: import pandas as pd

```
[4]: dataset_path = "./data/titanic_kaggle.csv"
    data = pd.read_csv(dataset_path)
    data.head(5)
[4]:
       PassengerId Survived Pclass \
                                     3
    0
                  1
                            0
    1
                  2
                            1
                                    1
                                     3
    2
                  3
                            1
     3
                  4
                            1
                                     1
     4
                  5
                            0
                                     3
                                                      Name
                                                               Sex
                                                                     Age SibSp \
    0
                                  Braund, Mr. Owen Harris
                                                              male 22.0
                                                                               1
       Cumings, Mrs. John Bradley (Florence Briggs Th...
    1
                                                            female 38.0
                                                                               1
    2
                                   Heikkinen, Miss. Laina female 26.0
                                                                               0
    3
             Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                            female 35.0
                                                                               1
    4
                                 Allen, Mr. William Henry
                                                              male 35.0
                                                                               0
                                    Fare Cabin Embarked
                         Ticket
       Parch
    0
            0
                      A/5 21171
                                  7.2500
                                           NaN
                                                       S
    1
            0
                       PC 17599 71.2833
                                           C85
                                                       С
    2
               STON/02. 3101282
                                                       S
            0
                                  7.9250
                                           NaN
    3
                                                       S
                         113803
                                 53.1000 C123
            0
    4
            0
                         373450
                                  8.0500
                                           NaN
                                                       S
```

2. Dataset overwiev

```
[3]: data.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 891 entries, 0 to 890
    Data columns (total 12 columns):
                       Non-Null Count Dtype
     #
         Column
         ____
                       _____
                                       _ _ _ _ _
     _ _ _
     0
         PassengerId 891 non-null
                                       int64
     1
         Survived
                       891 non-null
                                       int64
     2
         Pclass
                       891 non-null
                                       int64
      3
         Name
                       891 non-null
                                       object
      4
                       891 non-null
                                       object
         Sex
      5
                       714 non-null
                                       float64
         Age
      6
         SibSp
                       891 non-null
                                       int64
      7
         Parch
                       891 non-null
                                       int64
      8
         Ticket
                       891 non-null
                                       object
      9
                                       float64
         Fare
                       891 non-null
     10 Cabin
                       204 non-null
                                       object
     11 Embarked
                       889 non-null
                                       object
    dtypes: float64(2), int64(5), object(5)
    memory usage: 83.7+ KB
```

[6]: numeric_data.describe()

[6]:		Age	SibSp	Parch	Fare
	count	714.000000	891.000000	891.000000	891.000000
	mean	29.699118	0.523008	0.381594	32.204208
	std	14.526497	1.102743	0.806057	49.693429
	min	0.420000	0.00000	0.000000	0.000000
	25%	20.125000	0.00000	0.000000	7.910400
	50%	28.000000	0.00000	0.000000	14.454200
	75%	38.000000	1.000000	0.000000	31.000000
	max	80.00000	8.000000	6.000000	512.329200

[7]:	catero	gical_data.de	escribe()						
[7]:		PassengerId	Survived	Pclass	Sex	Ticket	Cabin	Embarked	
	count	891	891	891	891	891	204	889	
	unique	891	2	3	2	681	147	3	
	top	675	0	3	male	CA. 2343	C23 C25 C27	S	
	freq	1	549	491	577	7	4	644	

3. Data preprocessing

In the first stage of data preprocessing it was decided to only remove the columns for PassengerId, Passenger Name, Ticket type and Cabin. Removing the PassengerId and Passenger Name columns is self-explanatory - in no way does PassengerId or Passenger Name have any bearing on whether a person survived. It would only be possible to derive passenger status from passenger name, as there are markings such as 'Mr.', 'Mrs.', 'Miss.', 'Master.' In case of tickets, the designations for most tickets vary - 681 unique values out of 891 occurrences. One could extract some information from the tickets from their designations (e.g., whether they begin with a number or a letter). However, historical data would need to be consulted to find out what the ticket designations mean. In the case of cabin designations, as many as 697 values are missing - for this reason it was decided to remove the entire column, as it carries too little information.

Of course, the preliminary data analysis and preprocessing stage itself could have been even more extensive - exploring the relationships between features, examining the impact of individual features, plotting graphs to better understand the data. However, the main purpose of this notebook is not to analyse a given set of data in detail, but only to show the possibilities of using the RuleXAI library. For this reason, some simplifications in the analysis have been decided.

```
[8]: data.drop(["PassengerId", "Name", "Ticket", "Cabin"], axis=1, inplace=True)
    data.reset_index(inplace=True, drop=True)
    data.head(5)
```

[8]:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	0	3	male	22.0	1	0	7.2500	S
	1	1	1	female	38.0	1	0	71.2833	C
	2	1	3	female	26.0	0	0	7.9250	S
	3	1	1	female	35.0	1	0	53.1000	S
	4	0	3	male	35.0	0	0	8.0500	S

II. Use of a decision tree from sklearn

In the first stage it was decided to use the decision tree for classification, which is available in the sklearn package and which is also supported by the RuleXAI library.

1. Data preparation for decision tree

Since the decision tree algorithm does not support missing values and only operates on numeric data, it was necessary to fill in missing values (for numeric data the median was used, and for categorical data the mode, which is the most frequent value) and dummify. The numerical data could also be rescaled - however, it was decided not to do so to facilitate further analysis, which will be seen later.

```
[9]: data.Age = data.Age.fillna(data.Age.median())
    data.Embarked = data.Embarked.fillna(data.Embarked.mode())
    data_dummies = pd.get_dummies(data.drop(["Survived"], axis=1))
    data_dummies_scaled = data_dummies.copy()
    X = data_dummies_scaled
    y = data.Survived
```

2. Data split for training and test datasets

```
[10]: from sklearn.model_selection import train_test_split
```

```
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.3, random_state=42, )
```

3. Building and testing the model

A simple decision tree model with default parameters was used, since the main goal is not to get the best possible results, but only to show the use of the RuleXAI library.

```
[11]: from sklearn.model_selection import cross_val_score
from sklearn.metrics import balanced_accuracy_score
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier(random_state=1, max_depth=5)
cv = cross_val_score(dt, X_train, y_train, cv=5, scoring = "balanced_accuracy")
print(cv)
print(cv,mean())
[0.69121658 0.82526142 0.73472757 0.72491639 0.8157748 ]
0.7583793541088122
```

[12]: dt.fit(X_train, y_train)

```
[12]: DecisionTreeClassifier(max_depth=5, random_state=1)
```

```
[13]: balanced_accuracy_score(y_test, dt.predict(X_test))
```

[13]: 0.7807425259654559

4. Determination of the feature importance from the decision tree in the sklearn package

```
[14]: features_importances = pd.DataFrame(columns=["Feature", "Importance"])
  features_importances.Feature = X_train.columns
  features_importances.Importance = dt.feature_importances_
  features_importances = features_importances.sort_values(
        by=["Importance"], ascending=False)
  features_importances.reset_index(inplace=True, drop=True)
```

features_importances

[14]:		Feature	Importance	
	0	Sex_female	0.516327	
	1	Pclass_3	0.158578	
	2	Age	0.120043	
	3	Fare	0.119806	
	4	SibSp	0.041863	
	5	Embarked_C	0.028040	
	6	Pclass_1	0.006695	
	7	Pclass_2	0.006262	
	8	Parch	0.002385	
	9	Sex_male	0.000000	
	10	Embarked_Q	0.000000	
	11	Embarked_S	0.000000	

Looking at the importance of the features obtained directly from the decision tree in sklearn, it can be seen that the feature that most distinguished whether someone survived or not was the gender of the person, and more precisely whether the person was a woman or not. However, there is no information on whether the fact that a person was a woman caused survival or death. Knowing the context of the data, it can be concluded that men were gentlemen and they let women go first, therefore it can be concluded that if the person was a woman, she had a better chance of survival. The second most important feature that distinguished between survivors and non-survivors was whether the person was traveling in 3rd class. Assuming that the women were saved first, the next selection criterion would be in which class someone traveled. If it was 3rd class, it can be concluded that he was saved last, so there is a high probability that he did not survive. Another feature distinguishing whether or not a person survived was the age of the person. It can be assumed that children and the elderly people were saved from people in their prime, who had a better chance of surviving in difficult conditions. Another important feature was the amount of fare - it can be concluded that people who paid more for the ticket, traveled in a better class and in better conditions. This coincides with the fact that the survivors also distinguished very well whether they were traveling in 3rd class or not.

We can see that the obtained validities of the features coincide with what can be inferred from the historical data and the context of the event. However, without the context, it would be difficult to conclude which feature indicates which class - on the basis of the presented importance of features, one could only obtain information about the separation of classes, and not about which class a given feature indicates.

5. Model generation based on top 50% of features

[15]: features_number = 0.5 * features_importances.shape[0]

X_train_sklearn_features

[16]:		Sex_female	Pclass_3	Age	Fare	SibSp	Embarked_C
	445	0	0	4.0	81.8583	0	0
	650	0	1	28.0	7.8958	0	0
	172	1	1	1.0	11.1333	1	0
	450	0	0	36.0	27.7500	1	0
	314	0	0	43.0	26.2500	1	0
	106	1	1	21.0	7.6500	0	0
	270	0	0	28.0	31.0000	0	0
	860	0	1	41.0	14.1083	2	0
	435	1	0	14.0	120.0000	1	0
	102	0	0	21.0	77.2875	0	0

[623 rows x 6 columns]

```
[20]: dt_sklearn_features = DecisionTreeClassifier(random_state=1, max_depth=5)
    cv = cross_val_score(dt_sklearn_features,
```

X_train_sklearn_features, y_train, cv=5, scoring = "balanced_ →accuracy")
print(cv)
print(cv.mean())
[0.74440807 0.83791965 0.73018712 0.7703456 0.79598662]
0.7757694124203101

[21]: dt_sklearn_features.fit(X_train_sklearn_features, y_train)

[21]: DecisionTreeClassifier(max_depth=5, random_state=1)

```
[22]: balanced_accuracy_score(y_test, dt_sklearn_features.predict(X_test_sklearn_features))
```

[22]: 0.7839272393412521

Looking at the results obtained on the training set (in cross-validation) and the test set, one can see that selecting only the most important features according to the ranking obtained with sklearn improved the results obtained. Indeed, the selected features have the greatest impact in distinguishing whether a person survived or not.

III. Analysis of the decision tree model from the previous point with RuleXAI

1. RuleXAI initialisation

- [23]: from rulexai.explainer import RuleExplainer explainer = RuleExplainer(model=dt, X=X_train, y=y_train, type="classification") explainer.explain()
- [23]: <rulexai.explainer.RuleExplainer at 0x29d6719f8b0>

2. Presentation of the rules derived from the decision tree

```
[24]: rules = explainer.get_rules()
      for rule in rules:
          print(rule)
      IF Sex_female = (-inf, 0.5> AND Age = (6.5, 77.0> AND Fare = (-inf, 52.277099609375> AND
      \rightarrow Pclass_1 = (-inf, 0.5> THEN Survived = {0}
      IF Sex_female = (0.5, inf) AND Pclass_3 = (-inf, 0.5> AND Age = (2.5, 49.5> AND Fare = (-
      →inf, 149.035400390625> THEN Survived = {1}
      IF Sex_female = (0.5, inf) AND Pclass_3 = (0.5, inf) AND Fare = (-inf, 15).
      → 372900009155273> AND Age = (-inf, 36.5> THEN Survived = {1}
      IF Sex_female = (-inf, 0.5> AND Age = (6.5, 77.0> AND Fare = (-inf, 52.277099609375> AND
      \rightarrow Pclass_1 = (0.5, inf) THEN Survived = {0}
      IF Sex_female = (0.5, inf) AND Pclass_3 = (0.5, inf) AND Fare = (15.372900009155273, 23.
      → 350000381469727> AND Age = (-inf, 36.5> THEN Survived = {1}
      IF Sex_female = (-inf, 0.5> AND Age = (6.5, inf) AND Fare = (59.08749961853027, inf) AND_
      \rightarrow Embarked_C = (-inf, 0.5> THEN Survived = {0}
      IF Sex_female = (0.5, inf) AND Pclass_3 = (0.5, inf) AND Fare = (23.350000381469727,
      \rightarrow inf) AND Age = (7.0, inf) THEN Survived = {0}
      IF Sex_female = (-inf, 0.5> AND Age = (6.5, inf) AND Fare = (59.08749961853027, inf) AND_
      \rightarrow Embarked_C = (0.5, inf) THEN Survived = {1}
      IF Sex_female = (-inf, 0.5> AND Age = (-inf, 6.5> AND SibSp = (-inf, 3.0> THEN Survived
      \rightarrow = \{1\}
      IF Sex_female = (0.5, inf) AND Pclass_3 = (-inf, 0.5> AND Age = (49.5, inf) AND Fare = (-
      →inf, 149.035400390625> THEN Survived = {1}
      IF Sex_female = (0.5, inf) AND Pclass_3 = (-inf, 0.5> AND Age = (2.5, inf) AND Fare =__
      \leftrightarrow (152.5062484741211, inf) THEN Survived = {1}
      IF Sex_female = (-inf, 0.5> AND Age = (22.0, inf) AND Fare = (52.277099609375, 59.
      →08749961853027> THEN Survived = {1}
      IF Sex_female = (0.5, inf) AND Pclass_3 = (0.5, inf) AND Fare = (-inf, 23.
      \Rightarrow 350000381469727> AND Age = (36.5, inf) THEN Survived = {0}
      IF Sex_female = (-inf, 0.5> AND Age = (-inf, 6.5> AND SibSp = (3.0, inf) AND Parch = (-
      \rightarrow inf, 1.5> THEN Survived = {0}
      IF Sex_female = (0.5, inf) AND Pclass_3 = (0.5, inf) AND Fare = (23.350000381469727,
      \rightarrow inf) AND Age = (-inf, 3.5> THEN Survived = {0}
      IF Sex_female = (-inf, 0.5> AND Age = (-inf, 6.5> AND SibSp = (3.0, inf) AND Parch = (1.
      \Rightarrow5, inf) AND Fare = (31.331250190734863, inf) THEN Survived = {0}
      IF Sex_female = (0.5, inf) AND Pclass_3 = (-inf, 0.5> AND Age = (-inf, 2.5> AND Pclass_2_
      \rightarrow= (0.5, inf) THEN Survived = {1}
      IF Sex_female = (0.5, inf) AND Pclass_3 = (0.5, inf) AND Fare = (23.350000381469727,
      \rightarrow inf) AND Age = (3.5, 7.0> THEN Survived = {1}
                                                                                     (continues on next page)
```

IF Sex_female = (0.5, inf) AND Pclass_3 = (-inf, 0.5> AND Age = (2.5, inf) AND Fare =_ (149.035400390625, 152.5062484741211> THEN Survived = {0} IF Sex_female = (-inf, 0.5> AND Age = (6.5, 22.0> AND Fare = (52.277099609375, 59. 08749961853027> THEN Survived = {0} IF Sex_female = (-inf, 0.5> AND Age = (77.0, inf) AND Fare = (-inf, 52.277099609375>_ THEN Survived = {1} IF Sex_female = (-inf, 0.5> AND Age = (-inf, 6.5> AND SibSp = (3.0, inf) AND Parch = (1. 5, inf) AND Fare = (-inf, 31.331250190734863> THEN Survived = {0} IF Sex_female = (0.5, inf) AND Pclass_3 = (-inf, 0.5> AND Age = (-inf, 2.5> AND Pclass_2_ →= (-inf, 0.5> THEN Survived = {0}

3. Importance of features determined by RuleXAI

[25]:	explainer.feature_importances_								
[25]:	0	attributes	0 importances	1 attributes	1 importances				
	0	Pclass_3	0.895689	Sex_female	1.078293				
	1	Sex_female	0.844471	Age	0.973953				
	2	SibSp	0.683045	Fare	0.493457				
	3	Fare	0.584592	Pclass_3	0.140172				
	4	Age	0.396833	Pclass_2	0.126684				
	5	Pclass_2	0.186594	Embarked_C	0.11173				

0.101517

7 Parch -0.051929 8 Pclass_1 -0.138521 Contrary to the importance of the features returned by the decision tree from sklearn, RuleXAI examines the importance of the conditions in the context of the class. In the case of this dataset, the importance of a feature tells us how much a given feature of a person contributed to the assignment of that person to this class. Analysing the ranking of the feature importance, it can be concluded that what most characterised the non-survivors was whether they traveled in grade 3 or not. Second important feature that had impact on non-survival was the gender of the person, and more precisely whether the person was a woman or not. We can also see that the number of siblings had an impact on survival - if someone had many siblings, the parents probably were not able to ensure the safety of all their children. Looking at the survivors, it can be seen that gender had the greatest impact on survival. We can also see that age had big impact on survival - we can draw the conclusions that probably at the beginning, children and the elderly were rescued, because people in their prime had a greater chance of surviving in difficult conditions. Next, whether someone survived depended on the fare

SibSp

0.089413

- richer people were saved earlier than poorer.

From the feature ranking obtained with RuleXAI, similar conclusions can be drawn as with the feature ranking obtained with sklearn. The advantage of using RuleXAI, however, is that validity of the features is examined in the context of the class. Thanks to this, even without knowing the context, it would be known which feature influenced the assignment of a given class to a given object the most. An even more in-depth analysis can be performed using the ranking of conditions from the RuleXAI library, as will be shown later in the report

6

Embarked_C

4. Model generation based on top 50% of features for each class from RuleXAI

```
[26]: import numpy as np
      features_importances_rulexai = explainer.feature_importances_
     percent = 50
      importances_TOP = []
     for j in range(0, features_importances_rulexai.shape[1] + 0, 2):
         class_importances = (
              features_importances_rulexai.iloc[:, j]
              .replace("-", np.nan)
              .dropna()
         )
          class_importances_TOP_number = np.round(
              (percent / 100) * class_importances.shape[0]
         )
         if class_importances_TOP_number == 0:
              class_importances_TOP_number = 1
         class_importances_TOP = class_importances.loc[
              0: class_importances_TOP_number - 1
         ]
          importances_TOP.extend(list(class_importances_TOP))
     importances_TOP_list = list(set(importances_TOP))
     importances_TOP_list
[26]: ['Fare', 'Age', 'SibSp', 'Sex_female', 'Pclass_3']
[27]: X_train_rulexai_features = X_train[importances_TOP_list]
     X_test_rulexai_features = X_test[importances_TOP_list]
     X_train_rulexai_features.head(5)
[27]:
                    Age SibSp Sex_female Pclass_3
             Fare
     445 81.8583
                   4.0
                              0
                                          0
                                                    0
     650 7.8958 28.0
                              0
                                          0
                                                    1
     172 11.1333
                   1.0
                                          1
                                                    1
                             1
     450 27.7500 36.0
                              1
                                          0
                                                    0
     314 26.2500 43.0
                              1
                                          0
                                                    0
[28]: dt_rulexai_features = DecisionTreeClassifier(random_state=1, max_depth=5)
     cv = cross_val_score(dt_rulexai_features,
                           X_train_rulexai_features, y_train, cv=5, scoring = "balanced_
      \leftrightarrowaccuracy")
     print(cv)
     print(cv.mean())
```

[0.74440807 0.83791965 0.72110622 0.79403567 0.78065775] 0.7756254727056493

[29]: dt_rulexai_features.fit(X_train_rulexai_features, y_train)

```
[29]: DecisionTreeClassifier(max_depth=5, random_state=1)
```

```
[30]: balanced_accuracy_score(y_test, dt_rulexai_features.predict(X_test_rulexai_features))
```

```
[30]: 0.8017157284673209
```

By selecting 50% of the most important features from the ranking obtained with RuleXAI, it can be seen that compared to the basic set, the results obtained by the decision tree have improved. Comparing these results with the results obtained for the set containing 50% of the most important features from the ranking determined with the use of sklearn, we can see that the results also have improved.

5. Further analysis using RuleXAI

5.1 Rule condition importance

Below we present how the importance of the conditions from rules derived from a decision tree can be analysed.

```
[31]: explainer.condition_importances_
```

[9-].	1			
[31] :		<pre>0 conditions_names</pre>	-	\
	0	Sex_female = $(-inf, 0.5)$	1.444185	
	1	$Pclass_3 = (0.5, inf)$	0.856801	
	2	SibSp = (3.0, inf)	0.683045	
	3	Fare = (149.035400390625, 152.5062484741211>	0.455265	
	4	Age = (6.5, 22.0>	0.335094	
	5	Fare = (23.350000381469727, inf)	0.246165	
	6	Age = (-inf, 2.5>	0.236955	
	7	Age = $(36.5, inf)$	0.204974	
	8	Pclass_2 = (-inf, 0.5>	0.186594	
	9	Fare = (-inf, 31.331250190734863>	0.119378	
	10	Fare = (-inf, 52.277099609375>	0.105219	
	11	Embarked_C = $(-inf, 0.5)$	0.101517	
	12	Age = (6.5, 77.0>	0.055288	
	13	Parch = (-inf, 1.5)	0.053057	
	14	$Pclass_1 = (-inf, 0.5)$	0.042272	
	15	Pclass_3 = (-inf, 0.5>	0.038888	
	16	Fare = (-inf, 23.350000381469727>	0.038706	
	17	Age = $(7.0, inf)$	0.032743	
	18	Age = (6.5, inf)	0.030661	
	19	Age = $(2.5, inf)$	0.005461	
	20	Age = (-inf, 3.5>	-0.087280	
	21	Fare = (31.331250190734863, inf)	-0.103671	
	22	Parch = (1.5, inf)	-0.104986	
	23	Fare = (59.08749961853027, inf)	-0.125345	
	24	Fare = (52.277099609375, 59.08749961853027>	-0.151125	
	25	$Pclass_1 = (0.5, inf)$	-0.180793	
	26	Age = $(-inf, 6.5)$	-0.417063	

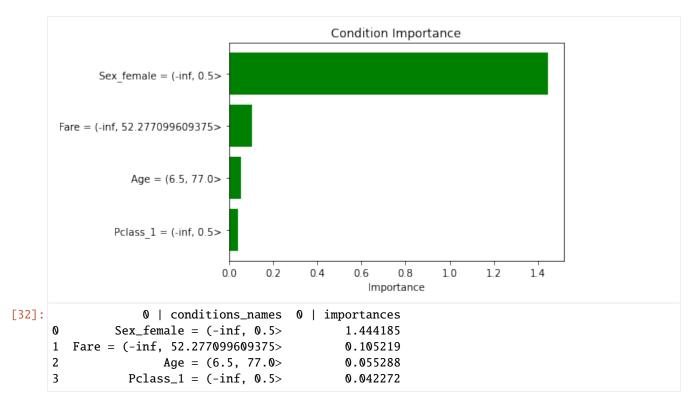
Sex_female = $(0.5, inf)$	-0.599715	
1 conditions_names 1	importances	
$Sex_female = (0.5, inf)$	1.378759	
Age = $(77.0, inf)$	0.404701	
Age = (-inf, 6.5>	0.339353	
Fare = (52.277099609375, 59.08749961853027>	0.285962	
Pclass_3 = (-inf, 0.5>	0.280239	
Age = (3.5, 7.0>	0.254798	
$Pclass_2 = (0.5, inf)$	0.126684	
Fare = (59.08749961853027, inf)	0.120677	
$Embarked_C = (0.5, inf)$	0.11173	
SibSp = (-inf, 3.0>	0.089413	
Fare = (15.372900009155273, 23.350000381469727>	0.084646	
Fare = (152.5062484741211, inf)	0.039821	
Fare = (23.350000381469727, inf)	0.033452	
Age = (-inf, 2.5>	0.031559	
Age = $(22.0, inf)$	0.011474	
Age = (-inf, 36.5>	0.011118	
Age = $(2.5, inf)$	-0.003344	
Age = (2.5, 49.5>	-0.006889	
Age = $(6.5, inf)$	-0.008256	
Fare = (-inf, 149.035400390625>	-0.012183	
	-0.027228	
Fare = (-inf, 15.372900009155273>	-0.031689	
Age = $(49.5, inf)$	-0.060562	
	-0.140068	
Sex_female = $(-inf, 0.5)$	-0.300466	
-	-	
-	-	
-	-	
	<pre>1 conditions_names 1 Sex_female = (0.5, inf) Age = (77.0, inf) Age = (-inf, 6.5> Fare = (52.277099609375, 59.08749961853027> Pclass_3 = (-inf, 0.5> Age = (3.5, 7.0> Pclass_2 = (0.5, inf) Fare = (59.08749961853027, inf) Embarked_C = (0.5, inf) SibSp = (-inf, 3.0> Fare = (15.372900009155273, 23.350000381469727> Fare = (152.5062484741211, inf) Fare = (23.350000381469727, inf) Age = (-inf, 2.5> Age = (22.0, inf) Age = (2.5, inf) Age = (-inf, 36.5> Age = (2.5, inf) Age = (6.5, inf) Fare = (-inf, 149.035400390625> Fare = (-inf, 15.37290009155273> Age = (49.5, inf)</pre>	$1 \mid \text{conditions_names } 1 \mid \text{importances} \\ Sex_female = (0.5, inf) \\ Age = (77.0, inf) \\ 0.404701 \\ Age = (-inf, 6.5> \\ 0.339353 \\ Fare = (52.277099609375, 59.08749961853027> \\ 0.285962 \\ Pclass_3 = (-inf, 0.5> \\ 0.280239 \\ Age = (3.5, 7.0> \\ 0.254798 \\ Pclass_2 = (0.5, inf) \\ 0.126684 \\ Fare = (59.08749961853027, inf) \\ 0.120677 \\ Embarked_C = (0.5, inf) \\ 0.11173 \\ SibSp = (-inf, 3.0> \\ 0.089413 \\ Fare = (15.372900009155273, 23.350000381469727> \\ 0.084646 \\ Fare = (152.5062484741211, inf) \\ 0.039821 \\ Fare = (23.350000381469727, inf) \\ 0.033452 \\ Age = (-inf, 2.5> \\ 0.031559 \\ Age = (22.0, inf) \\ 0.011474 \\ Age = (2.5, inf) \\ 0.011474 \\ Age = (2.5, inf) \\ 0.008344 \\ Age = (2.5, inf) \\ 0.008256 \\ Fare = (-inf, 149.035400390625> \\ -0.0027228 \\ Fare = (-inf, 15.372900009155273> \\ -0.031689 \\ Age = (49.5, inf) \\ -0.060562 \\ Pclass_3 = (0.5, inf) \\ -0.140068 \\ \end{bmatrix}$

Looking at the importance of individual conditions, we can see that the most important condition for a person not surviving is that the person was not a woman, that is, person was a man. On the other hand, the most important condition for a person to survive is that the person was a woman. In this way, we have an explicit confirmation of the hypothesis put forward on the basis of the data context during the analysis of the importance of the features. At this point, note that for categorical variables such as Sex female, where the feature can be 0 or 1, the rules taken from the decision tree return the condition Sex female = (-inf, 0.5) when the feature is 0 and Sex female = (0.5, inf) when the feature takes the value 1.

We also see that the second condition determing that the person did not survive is that they traveled in 3rd grade. This also confirms the hypothesis put forward during the analysis of the feature importance. In the case of the feature importance analysis, we only had information on whether survival was affected by the fact that the person was travelling in 3rd grade. The ranking of conditions gives us an unambiguous confirmation of which decision is impacted by this feature.

The situation is similar with the number of siblings. We can see that if a person had more than 3 siblings, it was more likely that they were in the group of non-survivors. This confirms the hypothesis put forward earlier: with more children, the parents were not able to ensure the safety of all their children.

On the other hand, when looking at the conditions for survivors, it can be seen that in addition to being a woman, the following conditions rank high: Age = (77.0, inf), Age = (-inf, 6.5). This confirms the hypothesis that children and the elderly people were saved first.


5.2 Local explainability

It is often interesting and important to know on what criteria the model made its decision for a given example. In general, thanks to the explanations obtained with XAI methods, the correctness of the model can be verified. Additionally, in some applications of AI it is important that thanks to the use of XAI people affected by the model's decision better understand their situation and have more trust in the model.

This type of explanation is provided by RuleXAI. The explanations take the form of easy to understand and interpret rules, based on which the model makes a decision for a given example, and the importance of the conditions contained in them.

```
[32]: example_X = X_train.iloc[1, :]
```

```
example_Y = pd.DataFrame(y_train).iloc[1, :]
explainer.local_explainability(example_X, example_Y, plot = True)
Example:
                28.0
Age
SibSp
                 0.0
Parch
                 0.0
Fare
              7.8958
Pclass_1
                 0.0
Pclass_2
                 0.0
Pclass_3
                 1.0
Sex_female
                 0.0
Sex_male
                 1.0
Embarked_C
                 0.0
Embarked_Q
                 0.0
Embarked_S
                 1.0
Survived
                   0
Name: 650, dtype: object
Rules that covers this example:
IF Sex_female = (-inf, 0.5> AND Age = (6.5, 77.0> AND Fare = (-inf, 52.277099609375> AND.
\rightarrow Pclass_1 = (-inf, 0.5> THEN Survived = {0}
Importances of the conditions from rules covering the example
             0 | conditions_names 0 | importances
         Sex_female = (-inf, 0.5)
0
                                           1.444185
  Fare = (-inf, 52.277099609375>
1
                                           0.105219
2
                Age = (6.5, 77.0)
                                           0.055288
3
           Pclass_1 = (-inf, 0.5)
                                           0.042272
```


Looking at the explanation, we can see that the model classifies a person as a non-survivor based on the rule stating that the person not survived because: was male, was beetwen (6.5, 77.0> years old, paid little for the fare and did not travel in 1st class. The most important of these conditions was that this person was male.

5.3 Creation of a binary dataset

Another functionality provided by RuleXAI is the conversion of the input dataset into a set described by binary features that correspond to specific conditions determined by the model. If for a given condition the example takes the value 0, it means that it does not meet it. If, on the other hand, it takes 1, it means that it satisfies it. This dataset can be used to train other ML models. A significant advantage of such a set is that it has no missing values and only has one type of data (it can be considered as categorical or numerical). Thanks to this, it can be used with any of the available ML models.

[33]: X_train_tranformed = explainer.fit_transform(X_train, selector=None)

```
X_train_tranformed.head(5)
```

[33]: Sex_female = (-inf, 0.5> Age = (6.5, 77.0> Fare = (-inf, 52.277099609375>

Pclass_1 = (-inf, 0.5> Sex_female = (0.5, inf) Pclass_3 = (-inf, 0.5>

(continues on next page)

3	1	0	1	and from provious pag
4	1	0	1	
	Age = (2.5, 49.5> Fare = (-inf, 1	.49.035400390625> Pcla	ass_3 = (0.5, inf)	\
0	1	1	0	
1	1	1	1	
2	0	1	1	
3	1	1	0	
4	1	1	0	
	Fare = (-inf, 15.372900009155273>	\sim Parch = (1.5, 1)	inf) \	
0	0		1	
1	1		0	
2	1		0	
3	0		1	
4	6)	0	
	Fare = (31.331250190734863, inf)	Age = $(-inf 2.5) Pc$	lass $2 = (0.5 \text{ inf})$	\mathbf{N}
0	1	nge = (ini, 1.5/ i.e. 0	0	v
1	0	0	0	
2	0	1	0	
3	0	0	1	
4	0	0	1	
	Age = (3.5, 7.0> Fare = (149.0354	100300625 152 506248	4741211> \	
0	$\frac{1}{1}$	100390023, 132.3002404	0	
1	0		0	
2	0		0	
3	0		0	
4	0		0	
0	Age = (6.5, 22.0> Age = (77.0, ir 0	(1) rare = (-1) rare	331250190734863> \ 0	
1	0	0	1	
2	0	0	1	
3	0	0	1	
4	0	0	1	
	Pclass_2 = (-inf, 0.5>			
0 1	1			
2	1			
3	_ 0			
4	0			
[5	rows x 41 columns]			

[37]: X_test_transformed = explainer.transform(X_test)

X_test_transformed.head(5)

Sex_female = (-inf, 0.5> Age = (6.5, 77.0> Fare = (-inf, 52.277099609375> [37]: Pclass_1 = (-inf, 0.5> Sex_female = (0.5, inf) Pclass_3 = (-inf, 0.5> Age = (2.5, 49.5> Fare = (-inf, 149.035400390625> Pclass_3 = (0.5, inf) \ Fare = (-inf, 15.372900009155273> ... Parch = (1.5, inf) \backslash Fare = (31.331250190734863, inf) Age = (-inf, 2.5> Pclass_2 = (0.5, inf) \ Age = (3.5, 7.0> Fare = (149.035400390625, 152.5062484741211> \ Age = (6.5, 22.0> Age = (77.0, inf) Fare = (-inf, 31.331250190734863> \ $Pclass_2 = (-inf, 0.5)$ (continues on next page)

- [36]: DecisionTreeClassifier(max_depth=5, random_state=1)
- [38]: balanced_accuracy_score(y_test, dt_binary_dataset.predict(X_test_transformed))

```
[38]: 0.7807425259654559
```

Looking at the results obtained by the decision tree trained on the created binary set, we can see that it obtains very similar (even slightly better) results than on the original dataset.

5.4 Creation of a binary dataset based on top conditions

RuleXAI allows you to create a binary dataset with a selected percentage of the most important conditions.

```
[39]: X_train_tranformed = explainer.fit_transform(X_train, selector=0.25)
```

X_train_tranformed.head(5)

SibSp	= (313, 111) full $=$ (3212)	77099609375, 59.0874996185302	
0	0		0
1	0		0
2	0		0
3	0		0
4	0		0
Pclass	_3 = (-inf, 0.5> Sex_fema	le = (-inf, 0.5> Sex_female =	= (0.5, inf) \
0	1	1	0
1	0	1	0
2	0	0	1
3	1	1	0
4	1	1	0
	(3.5, 7.0> Fare = (149.03	5400390625, 152.5062484741211	l> \
Age =			0
Age = 0	1		0
Age = 0 1	1 0		0
Age = 0 1 2	1 0 0		0 0

Age = (6.5, 22.0> Age = (-inf, 2.5> Age = (-inf, 6.5> Pclass_3 = (0.5, inf) \backslash Fare = (23.350000381469727, inf) Age = (77.0, inf)

[44]: X_test_transformed = explainer.transform(X_test)

```
X_test_transformed.head(5)
```

```
[44]:
         SibSp = (3.0, inf) Fare = (52.277099609375, 59.08749961853027>
                                                                                 \backslash
      0
                            0
                                                                              0
      1
                            0
                                                                              0
      2
                            0
                                                                              0
      3
                            0
                                                                              0
      4
                            0
                                                                              0
        Pclass_3 = (-inf, 0.5> Sex_female = (-inf, 0.5> Sex_female = (0.5, inf)
                                                                                           0
                                 0
                                                             1
                                                                                         0
      1
                                 1
                                                             1
                                                                                         0
      2
                                0
                                                             1
                                                                                         0
      3
                                 1
                                                             0
                                                                                         1
      4
                                 0
                                                             0
                                                                                         1
         Age = (3.5, 7.0> Fare = (149.035400390625, 152.5062484741211>
                                                                                0
                          0
                                                                             0
                          0
                                                                             0
      1
      2
                          0
                                                                             0
      3
                                                                             0
                          1
      4
                          0
                                                                             0
        Age = (6.5, 22.0> Age = (-inf, 2.5> Age = (-inf, 6.5> Pclass_3 = (0.5, inf)
                                                                                                \setminus
      0
                           0
                                               0
                                                                    0
                                                                                             1
                                                                                             0
      1
                           0
                                               0
                                                                    0
      2
                           1
                                                0
                                                                    0
                                                                                             1
      3
                                                                                             0
                           0
                                               0
                                                                    1
      4
                           1
                                                0
                                                                    0
                                                                                             1
         Fare = (23.350000381469727, inf) Age = (77.0, inf)
      0
                                            0
                                                                 0
      1
                                            0
                                                                 0
      2
                                            0
                                                                 0
```

			(communed from providus puge)
3	1	0	
4	0	0	

[41]: dt_binary_dataset_with_TOP_conditions = DecisionTreeClassifier(random_state=1, max_ →depth=5)

- [42]: dt_binary_dataset_with_TOP_conditions.fit(X_train_tranformed,y_train)
- [42]: DecisionTreeClassifier(max_depth=5, random_state=1)
- **[45]:** 0.7701841969357893

The results obtained on a binary set containing only 25% of all conditions are very similar to those obtained on the entire set. We can see that with fewer data dimensions, similar results can be obtained. Under appropriate conditions, a binary set can be used also to reduce the dimensionality of the set.

5.5 Condition importance based on non-overlapping rule conditions

Below we present another analysis of the importance of the conditions from rules derived from a decision tree. This time the analysis focuses on conditions in rules splitted into base conditions so that individual conditions do not overlap.

[47]:	-	lainer.explain(basic_conditions= True) lainer.condition_importances_		
[47]:		0 conditions_names	0 importances	\setminus
	0	Sex_female = $(-inf, 0.5)$	0.709511	
	1	$SibSp = \langle 3.0, inf \rangle$	0.365199	
	2	Pclass_3 = <0.5, inf)	0.359394	
	3	Fare = <149.035400390625, 152.5062484741211)	0.345837	
	4	Age = $<7.0, 22.0$)	0.205906	
	5	Fare = (-inf, 15.372900009155273)	0.201038	
	6	Age = $(-inf, 2.5)$	0.188995	
	7	Pclass_2 = (-inf, 0.5)	0.186594	
	8	Fare = <23.350000381469727, 31.331250190734863)	0.094355	
	9	$Pclass_3 = (-inf, 0.5)$	0.086410	
	10	Age = <36.5, 49.5)	0.083850	
	11	Age = <22.0, 36.5)	0.074990	
	12	Fare = <31.331250190734863, 52.277099609375)	0.045709	
	13	Embarked_C = $(-inf, 0.5)$	0.036915	
	14	Parch = (-inf, 1.5)	0.035371	
	15	Age = <49.5, 77.0)	0.031508	
	16	Pclass_1 = (-inf, 0.5)	0.015372	
				(continues on next need)

17	Age = $<6.5, 7.0$)	0.00000	
18	$Parch = \langle 1.5, inf \rangle$	-0.049627	
19	<pre>Pclass_1 = <0.5, inf)</pre>	-0.065743	
20	Fare = <15.372900009155273, 23.350000381469727)	-0.104907	
21	Fare = <59.08749961853027, 149.035400390625)	-0.137746	
22	Fare = <152.5062484741211, inf)	-0.191079	
23	Age = $<3.5, 6.5$)	-0.222782	
24	Fare = <52.277099609375, 59.08749961853027)	-0.266055	
25	<pre>Sex_female = <0.5, inf)</pre>	-0.330555	
26	Age = <77.0, inf)	-0.340750	
27	Age = <2.5, 3.5)	-0.411382	
	1 conditions_names	1 importances	
0	<pre>Sex_female = <0.5, inf)</pre>	0.593139	
1	Age = <77.0, inf)	0.427564	
2	Age = <3.5, 6.5)	0.306936	
3	Fare = <52.277099609375, 59.08749961853027)	0.243723	
4	Age = <2.5, 3.5)	0.217869	
5	$Pclass_3 = (-inf, 0.5)$	0.129432	
6	Age = $(-inf, 2.5)$	0.127256	
7	$Pclass_2 = <0.5, inf)$	0.126684	
8	Fare = <59.08749961853027, 149.035400390625)	0.092037	
9	Fare = <15.372900009155273, 23.350000381469727)	0.09141	
10	Fare = <152.5062484741211, inf)	0.079653	
11	Fare = <23.350000381469727, 31.331250190734863)	0.075764	
12	SibSp = (-inf, 3.0)	0.053725	
13	Age = <22.0, 36.5)	0.051714	
14	$Embarked_C = <0.5, inf)$	0.040629	
15	Age = <49.5, 77.0)	0.026622	
16	Fare = <31.331250190734863, 52.277099609375)	0.025254	
17	Age = <6.5, 7.0)	0.0	
18	Age = <36.5, 49.5)	-0.001405	
19	Age = <7.0, 22.0)	-0.035978	
20	Fare = (-inf, 15.372900009155273)	-0.052213	
21	Fare = <149.035400390625, 152.5062484741211)	-0.05625	
22	$Pclass_3 = <0.5, inf)$	-0.060642	
23	Sex_female = $(-inf, 0.5)$	-0.151878	
24	-	-	
25	-	-	
26	-	-	
27	-	-	

Looking at the ranking of conditions that do not overlap, we can come to conclusions similar to the ones drawn from the ranking of overlaping conditions. However, differences can also be seen, e.g. the condition Age = (-inf, 6.5) was high in the ranking of overlapping conditions, suggesting the conclusion that all children under 6.5 were more likely to survive. Nevertheless, when we look at the assessment of the basic conditions, we can see that children aged between 2.5 and 6.5 years [Age = <2.5, 3.5), Age = <3.5, 6.5)] had a good chance of survival, and the condition for children under 2.5 is lower in the ranking. This suggests that infants (under 2.5 years of age) were less likely to survive, possibly due to their dependency.

5.3 Presentation of the rules consisting of non-overlapping base conditions

```
[48]: rules = explainer.get_rules_with_basic_conditions()
      for rule in rules:
          print(rule)
      IF [Sex_female = (-inf, 0.5)] AND [Age = <6.5, 7.0) OR Age = <7.0, 22.0) OR Age = <22.0,
      →36.5) OR Age = <36.5, 49.5) OR Age = <49.5, 77.0)] AND [Fare = (-inf, 15.
      \rightarrow 372900009155273) OR Fare = <15.372900009155273, 23.350000381469727) OR Fare = <23.
      →350000381469727, 31.331250190734863) OR Fare = <31.331250190734863, 52.277099609375)]
      \rightarrow AND [Pclass_1 = (-inf, 0.5)] THEN Survived = {0}
      IF [Sex_female = <0.5, inf)] AND [Age = <2.5, 3.5) OR Age = <3.5, 6.5) OR Age = <6.5, 7.
      →0) OR Age = <7.0, 22.0) OR Age = <22.0, 36.5) OR Age = <36.5, 49.5)] AND [Fare = (-inf,
      \rightarrow 15.372900009155273) OR Fare = <15.372900009155273, 23.350000381469727) OR Fare = <23.
      →350000381469727, 31.331250190734863) OR Fare = <31.331250190734863, 52.277099609375)
      →OR Fare = <52.277099609375, 59.08749961853027) OR Fare = <59.08749961853027, 149.
      →035400390625)] AND [Pclass_3 = (-inf, 0.5)] THEN Survived = {1}
      IF [Sex_female = <0.5, inf)] AND [Age = (-inf, 2.5) OR Age = <2.5, 3.5) OR Age = <3.5, 6.
      →5) OR Age = <6.5, 7.0) OR Age = <7.0, 22.0) OR Age = <22.0, 36.5)] AND [Fare = (-inf,
      →15.372900009155273)] AND [Pclass_3 = <0.5, inf)] THEN Survived = {1}
      IF [Sex_female = (-inf, 0.5)] AND [Age = <6.5, 7.0) OR Age = <7.0, 22.0) OR Age = <22.0,
      →36.5) OR Age = <36.5, 49.5) OR Age = <49.5, 77.0)] AND [Fare = (-inf, 15.
      → 372900009155273) OR Fare = <15.372900009155273, 23.350000381469727) OR Fare = <23.
      →350000381469727, 31.331250190734863) OR Fare = <31.331250190734863, 52.277099609375)]
      \rightarrow AND [Pclass_1 = <0.5, inf)] THEN Survived = {0}
      IF [Sex_female = <0.5, inf)] AND [Age = (-inf, 2.5) OR Age = <2.5, 3.5) OR Age = <3.5, 6.
      →5) OR Age = <6.5, 7.0) OR Age = <7.0, 22.0) OR Age = <22.0, 36.5)] AND [Fare = <15.
      → 372900009155273, 23.350000381469727)] AND [Pclass_3 = <0.5, inf)] THEN Survived = {1}
      IF [Sex_female = (-inf, 0.5)] AND [Age = <6.5, 7.0) OR Age = <7.0, 22.0) OR Age = <22.0,
      →36.5) OR Age = <36.5, 49.5) OR Age = <49.5, 77.0) OR Age = <77.0, inf)] AND [Fare =
      →<59.08749961853027, 149.035400390625) OR Fare = <149.035400390625, 152.5062484741211)
      →OR Fare = <152.5062484741211, inf)] AND [Embarked_C = (-inf, 0.5)] THEN Survived = {0}
      IF [Sex_female = <0.5, inf)] AND [Age = <7.0, 22.0) OR Age = <22.0, 36.5) OR Age = <36.5,
      → 49.5) OR Age = <49.5, 77.0) OR Age = <77.0, inf)] AND [Fare = <23.350000381469727, 31.
      \rightarrow 331250190734863) OR Fare = <31.331250190734863, 52.277099609375) OR Fare = <52.
      \rightarrow 277099609375, 59.08749961853027) OR Fare = <59.08749961853027, 149.035400390625) OR
      →Fare = <149.035400390625, 152.5062484741211) OR Fare = <152.5062484741211, inf)] AND
      \rightarrow [Pclass_3 = <0.5, inf)] THEN Survived = {0}
      IF [Sex_female = (-inf, 0.5)] AND [Age = <6.5, 7.0) OR Age = <7.0, 22.0) OR Age = <22.0,
      →36.5) OR Age = <36.5, 49.5) OR Age = <49.5, 77.0) OR Age = <77.0, inf)] AND [Fare =
      →<59.08749961853027, 149.035400390625) OR Fare = <149.035400390625, 152.5062484741211)
      →OR Fare = <152.5062484741211, inf)] AND [Embarked_C = <0.5, inf)] THEN Survived = {1}
      IF [Sex_female = (-inf, 0.5)] AND [Age = (-inf, 2.5) OR Age = <2.5, 3.5) OR Age = <3.5,
      \rightarrow 6.5)] AND [SibSp = (-inf, 3.0)] THEN Survived = {1}
      IF [Sex_female = <0.5, inf)] AND [Age = <49.5, 77.0) OR Age = <77.0, inf)] AND [Fare = (-
      →inf, 15.372900009155273) OR Fare = <15.372900009155273, 23.350000381469727) OR Fare =
      \Rightarrow <23.350000381469727, 31.331250190734863) OR Fare = <31.331250190734863, 52.
      \rightarrow 277099609375) OR Fare = <52.277099609375, 59.08749961853027) OR Fare = <59.
      →08749961853027, 149.035400390625)] AND [Pclass_3 = (-inf, 0.5)] THEN Survived = {1}
      IF [Sex_female = <0.5, inf)] AND [Age = <2.5, 3.5) OR Age = <3.5, 6.5) OR Age = <6.5, 7.
      \rightarrow 0) OR Age = <7.0, 22.0) OR Age = <22.0, 36.5) OR Age = <36.5, 49.5) OR Age = <49.5, 77.
      →0) OR Age = <77.0, inf)] AND [Fare = <152.5062484741211, inf)] AND [Pclass_3 = (-inf,
      \rightarrow 0.5] THEN Survived = {1}
```

```
IF [Sex_female = (-inf, 0.5)] AND [Age = <22.0, 36.5) OR Age = <36.5, 49.5) OR Age = <49.
→5, 77.0) OR Age = <77.0, inf)] AND [Fare = <52.277099609375, 59.08749961853027)] THEN_
\rightarrow Survived = {1}
IF [Sex_female = <0.5, inf)] AND [Age = <36.5, 49.5) OR Age = <49.5, 77.0) OR Age = <77.
→0, inf)] AND [Fare = (-inf, 15.372900009155273) OR Fare = <15.372900009155273, 23.
→ 350000381469727)] AND [Pclass_3 = <0.5, inf)] THEN Survived = {0}
IF [Sex_female = (-inf, 0.5)] AND [Age = (-inf, 2.5) OR Age = <2.5, 3.5) OR Age = <3.5,
\rightarrow 6.5)] AND [SibSp = <3.0, inf)] AND [Parch = (-inf, 1.5)] THEN Survived = {0}
IF [Sex_female = <0.5, inf)] AND [Age = (-inf, 2.5) OR Age = <2.5, 3.5)] AND [Fare = <23.
\rightarrow 350000381469727, 31.331250190734863) OR Fare = <31.331250190734863, 52.277099609375)
→OR Fare = <52.277099609375, 59.08749961853027) OR Fare = <59.08749961853027, 149.
\rightarrow035400390625) OR Fare = <149.035400390625, 152.5062484741211) OR Fare = <152.
→5062484741211, inf)] AND [Pclass_3 = <0.5, inf)] THEN Survived = {0}
IF [Sex_female = (-inf, 0.5)] AND [Age = (-inf, 2.5) OR Age = <2.5, 3.5) OR Age = <3.5,
→6.5)] AND [Fare = <31.331250190734863, 52.277099609375) OR Fare = <52.277099609375, 59.
\rightarrow 08749961853027) OR Fare = <59.08749961853027, 149.035400390625) OR Fare = <149.
→035400390625, 152.5062484741211) OR Fare = <152.5062484741211, inf)] AND [SibSp = <3.0,
\rightarrow inf)] AND [Parch = <1.5, inf)] THEN Survived = {0}
IF [Sex_female = <0.5, inf)] AND [Age = (-inf, 2.5)] AND [Pclass_3 = (-inf, 0.5)] AND_
\rightarrow [Pclass_2 = <0.5, inf)] THEN Survived = {1}
IF [Sex_female = <0.5, inf)] AND [Age = <3.5, 6.5) OR Age = <6.5, 7.0)] AND [Fare = <23.
→350000381469727, 31.331250190734863) OR Fare = <31.331250190734863, 52.277099609375)
→OR Fare = <52.277099609375, 59.08749961853027) OR Fare = <59.08749961853027, 149.
\rightarrow035400390625) OR Fare = <149.035400390625, 152.5062484741211) OR Fare = <152.
→5062484741211, inf)] AND [Pclass_3 = <0.5, inf)] THEN Survived = {1}
IF [Sex_female = <0.5, inf)] AND [Age = <2.5, 3.5) OR Age = <3.5, 6.5) OR Age = <6.5, 7.
\rightarrow 0) OR Age = <7.0, 22.0) OR Age = <22.0, 36.5) OR Age = <36.5, 49.5) OR Age = <49.5, 77.
→0) OR Age = <77.0, inf)] AND [Fare = <149.035400390625, 152.5062484741211)] AND.
\rightarrow [Pclass_3 = (-inf, 0.5)] THEN Survived = {0}
IF [Sex_female = (-inf, 0.5)] AND [Age = <6.5, 7.0) OR Age = <7.0, 22.0)] AND [Fare =
↔<52.277099609375, 59.08749961853027)] THEN Survived = {0}
IF [Sex_female = (-inf, 0.5)] AND [Age = <77.0, inf)] AND [Fare = (-inf, 15.
\rightarrow 372900009155273) OR Fare = <15.372900009155273, 23.350000381469727) OR Fare = <23.
→350000381469727, 31.331250190734863) OR Fare = <31.331250190734863, 52.277099609375)]
\rightarrow THEN Survived = {1}
IF [Sex_female = (-inf, 0.5)] AND [Age = (-inf, 2.5) OR Age = <2.5, 3.5) OR Age = <3.5,
→6.5)] AND [Fare = (-inf, 15.372900009155273) OR Fare = <15.372900009155273, 23.
→350000381469727) OR Fare = <23.350000381469727, 31.331250190734863)] AND [SibSp = <3.0,
\rightarrow inf)] AND [Parch = <1.5, inf)] THEN Survived = {0}
IF [Sex_female = <0.5, inf)] AND [Age = (-inf, 2.5)] AND [Pclass_3 = (-inf, 0.5)] AND
\leftrightarrow [Pclass_2 = (-inf, 0.5)] THEN Survived = {0}
```

IV. Using the RuleKit library - a versatile tool for rule learning - to generate rules

In the previous section, the rules obtained from the decision tree were analysed. In this section the analysis is based on rules obtained using the algorithm dedicated for rule-based learning. A set of such algorithms is provided by the RuleKit library.

1. Data preparation for RuleKit

RuleKit supports missing values and categorical data, so the step of preparing data specifically for this algorithm is not necessary - what was done in Section I is sufficient. The only thing to remember is that RuleKit accepts missing values for numeric columns as nan, while for categorical columns as None. For this reason it was necessary to change the missing values in the Embarked column from nan to None.

```
[49]: import numpy as np
```

```
X = data.drop(["Survived"], axis=1)
X.Embarked.replace(np.nan, None, inplace = True)
y = data.Survived
```

X.head(5)

[49]:		Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	3	male	22.0	1	0	7.2500	S
	1	1	female	38.0	1	0	71.2833	С
	2	3	female	26.0	0	0	7.9250	S
	3	1	female	35.0	1	0	53.1000	S
	4	3	male	35.0	0	0	8.0500	S

2. Data split for training and test datasets

```
[50]: from sklearn.model_selection import train_test_split
```

```
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.3, random_state=42)
```

3. Building and testing the model

induction_measure=Measures.C2,
pruning_measure=Measures.C2,
voting_measure=Measures.C2,
min_rule_covered=5

```
)
cv = cross_val_score(rc, X_train, y_train, cv=5, scoring = "balanced_accuracy")
print(cv)
print(cv.mean())
[0.73958333 0.886666667 0.70763889 0.8027027 0.82383191]
0.7920847009219034
```

[52]: rc.fit(X_train, y_train)

```
[52]: <rulekit.classification.RuleClassifier at 0x29d6da16fd0>
```

```
[53]: balanced_accuracy_score(y_test, rc.predict(X_test))
```

```
[53]: 0.749756125552304
```

The quality of the rule model is similar to that obtained for the decision tree. By controlling the rule model induction parameters even better results could be obtained, but this is not the subject of this notebook.

4. Presentation of the rules obtained by RuleKit

```
[54]: for rule in rc.model.rules:
          print(rule)
      IF Age = (-inf, 0.92) THEN Survived = \{1\}
      IF Pclass = {2} AND Sex = {female} THEN Survived = {1}
      IF Parch = (-inf, 1.50) AND Sex = {female} AND Fare = <29.36, inf) THEN Survived = {1}
      IF Pclass = {1} AND Sex = {female} AND Age = <8, inf) AND Fare = <29.36, inf) THEN_
       \rightarrow Survived = {1}
      IF Parch = (-inf, 1.50) AND Sex = {female} AND SibSp = (-inf, 2.50) AND Fare = <21.72,
       \rightarrow inf) THEN Survived = {1}
      IF Sex = {female} AND SibSp = \langle 0.50, inf \rangle AND Age = \langle 27.50, inf \rangle AND Fare = \langle 15.98, 22.
      \rightarrow 34) THEN Survived = {1}
      IF Parch = (-inf, 1.50) AND Sex = {female} AND SibSp = (-inf, 2.50) AND Fare = <10.48,
       \rightarrow inf) THEN Survived = {1}
      IF Parch = (-inf, 3.50) AND Sex = {female} AND SibSp = (-inf, 0.50) AND Fare = <10.83,
       \rightarrow inf) THEN Survived = {1}
      IF Parch = (-inf, 1.50) AND Sex = {female} AND Fare = <6.99, inf) THEN Survived = {1}
      IF SibSp = (-inf, 2) AND Age = <8, 43.50) AND Fare = <82.66, inf) THEN Survived = {1}
      IF SibSp = (-inf, 1.50) AND Age = \langle 3, 62 \rangle AND Fare = \langle 74.38, inf \rangle THEN Survived = {1}
      IF SibSp = (-inf, 1.50) AND Age = <22.50, 44.50) AND Fare = <52.28, 143.59) THEN.
       \rightarrow Survived = {1}
      IF Pclass = \{2\} AND Age = (-inf, 6.50) THEN Survived = \{1\}
      IF Embarked = \{S\} AND Age = \langle 2.50, 6.50 \rangle THEN Survived = \{1\}
      IF Parch = (-inf, 0.50) AND Fare = \langle 29.85, inf \rangle THEN Survived = {1}
      IF Pclass = {1} AND Parch = (-inf, 0.50) AND Age = (-inf, 48.50) AND Fare = <26.14, 30.
      \rightarrow75) THEN Survived = {1}
      IF Embarked = {C} AND Age = (-inf, 29.50) AND Fare = <7.56, 135.07) THEN Survived = {1}
      IF Parch = (-inf, 3.50) AND SibSp = (-inf, 2.50) AND Age = (-inf, 51.50) AND Fare = <18.
       \rightarrow 38, inf) THEN Survived = {1}
      IF Age = (-inf, 42.50) AND Fare = <10.48, inf) THEN Survived = \{1\}
```

```
(continued from previous page)
IF SibSp = (-inf, 0.50) AND Age = <30.50, 44.50) AND Fare = <7.91, inf) THEN Survived =
\leftrightarrow {1}
IF Parch = (-inf, 3.50) AND SibSp = (-inf, 2.50) AND Fare = <7.91, inf) THEN Survived =
\hookrightarrow {1}
IF Age = <20, 27.50) AND Fare = <7.13, 7.80) THEN Survived = {1}
IF Parch = (-inf, 3.50) AND SibSp = (-inf, 4.50) AND Age = (-inf, 60.50) AND Fare = <7.
\leftrightarrow 69, inf) THEN Survived = {1}
IF SibSp = \langle 4.50, inf \rangle THEN Survived = {0}
IF Parch = \langle 3.50, \text{ inf} \rangle THEN Survived = \{0\}
IF Age = \langle 26.50, inf \rangle AND Fare = (-inf, 7.13) THEN Survived = {0}
IF Fare = \langle 2.01, 7.13 \rangle THEN Survived = {0}
IF Sex = {male} AND Age = <13, 60.50) AND Fare = (-inf, 26.27) THEN Survived = {0}
IF Sex = {male} AND Age = <13, 77) AND Fare = (-inf, 52.28) THEN Survived = {0}
IF Embarked = {S} AND Sex = {male} AND Age = <13, 30.50) AND Fare = <7.80, inf) THEN_
\hookrightarrow Survived = {0}
IF Sex = {male} AND Age = \langle 13, 77 \rangle AND Fare = (-inf, 86.29) THEN Survived = {0}
IF Sex = {male} AND Age = <13, 77) AND Fare = (-inf, 387.66) THEN Survived = {0}
IF Pclass = \{3\} AND Sex = \{male\} AND Age = \langle 6.50, 25.50 \rangle AND Fare = \langle 16, inf \rangle THEN.
\hookrightarrow Survived = {0}
IF Pclass = \{3\} AND Fare = <23.35, 52.28) THEN Survived = \{0\}
IF Fare = <9.41, 10.48) THEN Survived = {0}
IF Embarked = {S} AND Age = <20.50, 30.50) AND Fare = <7.87, 8.08) THEN Survived = {0}
IF Embarked = \{S\} AND Parch = (-inf, 0.50) AND Fare = (-inf, 10.48) THEN Survived = \{0\}
IF Age = <17.50, inf) AND Fare = (-inf, 10.48) THEN Survived = {0}
IF Embarked = {S} AND Pclass = {3} AND Parch = (-inf, 0.50) AND SibSp = (-inf, 2.50) AND.
\rightarrow Age = <16.50, inf) AND Fare = <7.99, 51.70) THEN Survived = {0}
IF Pclass = \{3\} AND Age = <6.50, inf) AND Fare = <13.29, 15.17) THEN Survived = \{0\}
IF Parch = (-inf, 2.50) AND Age = <2.50, inf) AND Fare = (-inf, 29.41) THEN Survived =
→{0}
```

V. Analysis with RuleXAI of rules derived with RuleKit

1. Initialisation and explaination

```
[55]: from rulexai.explainer import RuleExplainer
explainer = RuleExplainer(model=rc, X=X_train, y=y_train, type="classification")
explainer.explain()
```

[55]: <rulexai.explainer.RuleExplainer at 0x29d6e38f3a0>

2. Feature importance determined by RuleXAI

[56] :	explainer.feature_importances_							
[56] :	1 at	ttributes	1 importances 0) attributes	0 importances			
	0	Sex	2.153698	Fare	2.745895			
	1	Fare	1.834094	Sex	1.481201			
	2	Age	1.518890	Pclass	0.731226			
	3	Pclass	0.437313	Parch	0.571222			

4	SibSp	0.161694	Age	0.550799		
5	Embarked	0.135499	SibSp	0.513230		
6	Parch	0.089201	Embarked	0.205367		

3. Rule condition importance

FE 77 -	1		
15/1:	explainer	condition	_importances_
	chprainer	Condition	_impor canceo_

		······································	· · · · -		
[57]:		1 conditions_names	1 importances	<pre>0 conditions_names</pre>	\
	0	<pre>Sex = {female}</pre>	2.153698	Sex = {male}	
	1	Age = $(-inf, 0.92)$	0.510823	$Pclass = \{3\}$	
	2	Age = <2.5, 6.5)	0.426003	Fare = $<2.01, 7.13$)	
	3	Age = $(-inf, 6.5)$	0.359902	Fare = <9.41 , 10.48)	
	4	$Pclass = \{2\}$	0.275112	Fare = $(-inf, 10.48)$	
	5	Fare = <82.66, inf)	0.267579	SibSp = <4.5, inf)	
	6	Fare = <52.28, 143.59)	0.257940	Parch = <3.5 , inf)	
	7	Fare = <29.85, inf)	0.247359	Fare = (-inf, 7.13)	
	8	Fare = <74.38 , inf)	0.239459	$Embarked = \{S\}$	
	9	Fare = <10.48 , inf)	0.213492	Fare = <7.87 , 8.08)	
	10	$Pclass = \{1\}$	0.162201	Age = $<13.0, 77.0$)	
	11	$Embarked = \{C\}$	0.154946	Fare = <13.29, 15.17)	
	12	Fare = <29.36, inf)	0.149020	Fare = <23.35, 52.28)	
	13	Fare = <7.91 , inf)	0.125088	Fare = (-inf, 29.41)	
	14	Fare = <18.38, inf)	0.098349	Age = <20.5 , 30.5)	
	15	Parch = (-inf, 1.5)	0.071067	Fare = (-inf, 26.27)	
	16	SibSp = (-inf, 1.5)	0.066773	Fare = (-inf, 52.28)	
	17	Fare = <21.72 , inf)	0.065569	Age = <6.5, 25.5)	
	18	Fare = <10.83 , inf)	0.062618	Parch = (-inf, 0.5)	
	19	Age = $<20.0, 27.5$)	0.059567	Age = $<13.0, 30.5$)	
	20	Age = $<30.5, 44.5$)	0.057521	Age = <6.5 , inf)	
	21	SibSp = (-inf, 2.5)	0.056610	Age = <17.5, inf)	
	22	Age = <27.5 , inf)	0.043101	Age = $<13.0, 60.5$)	
	23	Fare = <15.98, 22.34)	0.035205	Age = <26.5, inf)	
	24	Fare = <7.56, 135.07)	0.032317	Fare = (-inf, 86.29)	
	25	Age = $(-inf, 48.5)$	0.030201	Age = <2.5 , inf)	
	26	SibSp = <0.5, inf)	0.028345	Fare = <7.99, 51.7)	
	27	Fare = <26.14, 30.75)	0.026043	Age = <16.5 , inf)	
	28	Age = <22.5, 44.5)	0.024332	Fare = (-inf, 387.66)	
	29	Parch = (-inf, 3.5)	0.024229	Parch = (-inf, 2.5)	
	30	Fare = <7.69, inf)	0.018042	SibSp = (-inf, 2.5)	
	31	SibSp = (-inf, 2.0)	0.008422	Fare = <7.8 , inf)	
	32	Fare = <6.99, inf)	0.007874	Fare = <16.0 , inf)	
	33	SibSp = (-inf, 4.5)	0.006384	-	
	34	Age = $<3.0, 62.0$)	0.004901	-	
	35	Age = $< 8.0, 43.5$)	0.004844	-	
	36	Age = (-inf, 51.5)	0.002246	-	
	37	Age = $(-inf, 60.5)$	0.002245	-	
	38	Age = $(-inf, 42.5)$	0.000703	-	
	39	Age = <8.0 , inf)	-0.003570	-	
	40	Age = $(-inf, 29.5)$	-0.003928	-	
	41	SibSp = (-inf, 0.5)	-0.004841	-	
					(continues on next page)

			(continued from previous page)
42	Parch = (-inf, 0.5)	-0.006095	-
43	Fare = <7.13, 7.8)	-0.011860	-
44	$Embarked = \{S\}$	-0.019447	-
0	importances		
0	1.481201		
1	0.731226		
2	0.519133		
3	0.517857		
4	0.516811		
5	0.515306		
6	0.508929		
7	0.482425		
8	0.205367		
9	0.20006		
10	0.12964		
11	0.123496		
12	0.112628		
13	0.110282		
14	0.087622		
15	0.071871		
16	0.068313		
17	0.062968		
18	0.060664		
19	0.055904		
20	0.052733		
21	0.048465		
22	0.041519		
23	0.040535		
24	0.03164		
25	0.019917		
26	0.015628		
27	0.011496		
28	0.006411		
29	0.00163		
30	-0.002076		
31	-0.014855		
32	-0.015803		
33	-		
34	_		
35	_		
36	_		
37	_		
38	_		
39	-		
40	-		
41	-		
42	-		
43	-		
44	-		

Looking at the importance of the features and conditions obtained from the rules determined by RuleKit, one can come to conclusions similar to those obtained for rules determined from the decision tree. The main difference is that in rules

(continued from previous page)

generated by RuleKit, the fare also plays an important role - the lower the fare, the person traveled in a lower class what determined their survival.

4. Creation of a binary dataset based on top conditions

[59]: X_train_tranformed = explainer.fit_transform(X_train, selector=25) X_train_tranformed.head(5) [59]: Fare = <52.28, 143.59) Fare = <29.85, inf) Fare = <2.01, 7.13) Pclass = {1} \ Age = $(-\inf, 0.92)$ Parch = <3.5, inf) Fare = <74.38, inf) Age = <2.5, 6.5) Sex = {male} Pclass = {3} Fare = <10.48, inf) Fare = <9.41, 10.48) Fare = (-inf, 10.48) SibSp = <4.5, inf) Fare = (-inf, 7.13) Sex = {female} \ Pclass = {2} Fare = <82.66, inf) Age = (-inf, 6.5)

[60]: X_test_transformed = explainer.transform(X_test)

X_test_transformed.head(5)

00001000200030100	[60]:	Fare = <52.28	, 143.59) Fare =	<29.85, inf) Fare = <2.01,	7.13) Pclas	s = {1} \	
		0	0	0	0	0	
2 0 0 0 0 3 0 1 0 0		1	0	0	0	0	
3 0 1 0 0		2	0	0	0	0	
		3	0	1	0	0	

					(continued	from previous page)
4		0	0	0	0	
Age	= (-inf, 0.92) F	Parch = <3.5, in:	f) Fare = <74.3	8, inf) Age = \cdot	<2.5, 6.5)	\backslash
0	0	,	0	0	0 0	·
1	0		0	0	0	
2	0		0	0	0	
3	0		0	0	1	
4	0		0	0	0	
Sex	= {male} Pclass	$= \{3\}$ Fare $= <10$	0.48, inf) Fare	e = <9.41, 10.4	8) \	
0	1	1	1		0	
1	1	0	1		0	
2	1	1	0		0	
3	0	0	1		0	
4	0	1	1		0	
Fare	e = (-inf, 10.48)	SibSp = <4.5.	inf) Fare = (-i	nf. 7.13) Sex :	= {female}	\backslash
0	í í)	0	0	0 0	·
1	0)	0	0	0	
2	1	L	0	0	0	
3	0)	0	0	1	
4	0)	0	0	1	
Pcla	ass = {2} Fare =	<82.66, inf) Age	e = (-inf, 6.5)			
0	0	0	0			
1	1	0	0	1		
2	0	0	0	1		
3	1	0	1			
4	0	0	0)		

A binary dataset created in this way can be used to create a classifier using another machine learning algorithm. The advantage of this approach is that RuleKit has created rules on a set containing null values and containing both numeric and categorical variables. However, the prepared dataset consists only of numerical values 0 and 1 determining whether a given condition has been met and does not contain empty values. Therefore, you can easily use algorithms that deal only with numerical values and do not handle missing values, such as RandomForest as shown below.

```
[62]: from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier
```

0.7731568645642581

[64]: rf.fit(X_train_tranformed, y_train)

```
[64]: RandomForestClassifier(random_state=1)
```

```
[65]: balanced_accuracy_score(y_test, rf.predict(X_test_transformed))
```

```
[65]: 0.7861077638147702
```

VI. Summary

The presented analysis shows how the RuleXAI library may be used for data analysis and model explanation. Explanations, both global and local, are performed using the generated rule-based model representation.

```
[2]: import pandas as pd
from scipy.io import arff
from rulekit import RuleKit
from rulekit.regression import RuleRegressor
from rulekit.params import Measures
```

from rulexai.explainer import RuleExplainer

1.3.2 CPU

Read data

```
[3]: dataset_path = "./data/cpu.arff"
  data = pd.DataFrame(arff.loadarff(dataset_path)[0])
# code to change encoding of the file
  tmp_df = data.select_dtypes([object])
  tmp_df = tmp_df.stack().str.decode("utf-8").unstack()
  for col in tmp_df:
      data[col] = tmp_df[col].replace({"?": None})
x = data.drop(["class"], axis=1)
y = data["class"]
```

Train RuleKit model

```
[11]: # RuleKit
RuleKit.init()
reg = RuleRegressor(
    induction_measure=Measures.C2,
    pruning_measure=Measures.C2,
    voting_measure=Measures.C2,
)
reg.fit(x, y)
```

Rules

```
[12]: for rule in reg.model.rules:
          print(rule, rule.stats)
      IF vendor = {formation} THEN class = {34} [34,34] (p = 5.0, n = 0.0, P = 6.0, N = 203.0,
      IF MMIN = <80, inf) AND MMAX = (-inf, 1750) THEN class = {18} [16.92, 19.08] (p = 10.0, n_
      →= 1.0, P = 11.0, N = 198.0, weight = 0.8629476584022039, pvalue = 7.355108555449812e-
      <u>→</u>21)
      IF MMIN = \langle 756, inf \rangle AND MMAX = (-inf, 4250) AND CHMAX = \langle 7, 22 \rangle AND CHMIN = (-inf, 3, 3)
      \rightarrow 50) THEN class = {32} [30.64,33.36] (p = 4.0, n = 1.0, P = 7.0, N = 202.0, weight = 0.
      \leftrightarrow 6231258840169731, pvalue = 1.1803717269256882e-08)
      IF MMIN = <756, inf) AND MMAX = (-inf, 4250) AND MYCT = (-inf, 232.50) AND CHMAX = <3.50,
      → 22) AND CHMIN = (-inf, 3.50) THEN class = {29} [24.98,33.02] (p = 15.0, n = 3.0, P =
      →35.0, N = 174.0, weight = 0.5712917350848385, pvalue = 7.408462419973687e-25)
      IF MMIN = (-inf, 1500) AND MMAX = <1500, 4250) AND MYCT = <94.50, inf) AND CHMAX = <2.50,
      → 44) THEN class = {24} [21.77,26.23] (p = 18.0, n = 7.0, P = 23.0, N = 186.0, weight =
      →0.6108789153810191, pvalue = 1.183267277682215e-40)
      IF MMAX = (-inf, 4750) THEN class = {24} [10.30,37.70] (p = 69.0, n = 2.0, P = 88.0, N =_
      \rightarrow 121.0, weight = 0.8486424746828075, pvalue = 1.6425318084016525e-60)
      IF MYCT = <87, inf) AND CHMAX = (-inf, 96) THEN class = {29} [1.17,56.83] (p = 107.0, n_
      →= 11.0, P = 124.0, N = 85.0, weight = 0.7179513877721673, pvalue = 1.3893662585668293e-
      →64)
      IF MMAX = <6150, 9240) AND MYCT = (-inf, 129) AND CACH = <2, 28) AND CHMAX = (-inf, 46)
      \rightarrow THEN class = {46} [43.77,48.23] (p = 9.0, n = 2.0, P = 13.0, N = 196.0, weight = 0.
      ↔6821036106750392, pvalue = 1.023395667474569e-17)
      IF MMIN = (-inf, 2150) AND MMAX = <5000, 9240) AND MYCT = (-inf, 146.50) AND CHMAX = <5.
      _{\leftrightarrow}50, inf) THEN class = {46} [14.85,77.15] (p = 25.0, n = 1.0, P = 143.0, N = 66.0,_
      →weight = 0.5158687466379773, pvalue = 7.403283011266057e-14)
      IF MMIN = <2310, 4500) AND MYCT = <31.50, 102.50) AND CACH = (-inf, 48) AND CHMAX = (-
      →inf, 40) THEN class = {80} [57.27,102.73] (p = 12.0, n = 2.0, P = 34.0, N = 175.0, ...

weight = 0.5610564225690277, pvalue = 1.34750514438087e-09)

      IF MMIN = <640, 4500) AND MMAX = <7150, 24000) THEN class = \{65\} [36.20,93.80] (p = 60.0,
      \rightarrow n = 13.0, P = 68.0, N = 141.0, weight = 0.6927380687046022, pvalue = 2.
      →2589525624983582e-39)
      IF MYCT = <27.50, 44) AND CHMIN = (-inf, 10) THEN class = {253} [192.76,313.24] (p = 7.0,
      \rightarrow n = 3.0, P = 12.0, N = 197.0, weight = 0.5396996615905246, pvalue = 0.
      →001963352522246969)
      IF MMIN = \langle 884, \text{ inf} \rangle AND MMAX = \langle 9240, \text{ inf} \rangle AND CHMAX = \langle 2.50, 88 \rangle AND CHMIN = (-\text{inf}, 1)
      →14) THEN class = {117} [44.09,189.91] (p = 49.0, n = 11.0, P = 80.0, N = 129.0, weight
      →= 0.5667708333333334, pvalue = 4.475942404933969e-11)
      IF MMIN = <3000, inf) AND MMAX = <24000, 48000) AND CHMIN = <14, inf) THEN class = {381}.
      \rightarrow [301.01,460.99] (p = 6.0, n = 1.0, P = 8.0, N = 201.0, weight = 0.7450248756218906,
      →pvalue = 0.047637666066025854)
      IF MMIN = (-inf, 24000) AND MMAX = <28000, inf) AND MYCT = (-inf, 95) AND CACH = (-inf,
      \rightarrow 192) THEN class = {341} [129.60,552.40] (p = 19.0, n = 3.0, P = 34.0, N = 175.0,
      →weight = 0.6524789915966387, pvalue = 0.990671648706587)
```

RuleXAI

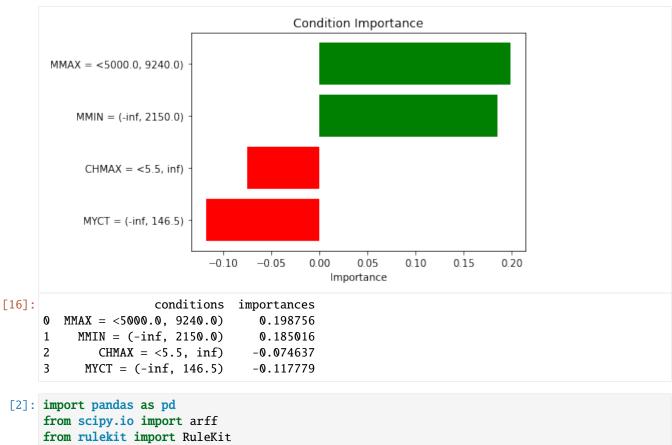
[13]:	<pre>explainer = RuleExplainer(model=reg</pre>	X=x,	y=y,	<pre>type="regression")</pre>
	explainer.explain()			

[13]: <rulexai.explainer.RuleExplainer at 0x28ba8c77b50>

Feature importance

[4]: e	xplainer.fea	ture_importances_	-
[4]:	attributes	importances	
3	MMAX	4.014332	
2	CHMIN	3.028757	
6	vendor	0.916667	
1	CHMAX	0.460550	
0	CACH	0.289558	
4	MMIN	0.167137	
5	MYCT	-1.233983	

Condition importance


```
[15]: explainer.condition_importances_
```

[15]:		conditions	importances
	0	CHMIN = (-inf, 10.0)	2.127775
	1	<pre>vendor = {formation}</pre>	0.916667
	2	MMAX = (-inf, 4750.0)	0.848642
	3	MMAX = (-inf, 1750.0)	0.827179
	4	MYCT = < 87.0 , inf)	0.643064
	5	MMAX = (-inf, 4250.0)	0.528220
	6	$MMAX = \langle 7150.0, 24000.0 \rangle$	0.481404
	7	CHMIN = (-inf, 14.0)	0.402859
	8	MMAX = <28000.0, inf)	0.381381
	9	MMAX = <24000.0, 48000.0)	0.339882
	10	MMAX = <6150.0, 9240.0	0.307522
	11	CHMIN = (-inf, 3.5)	0.260506
	12	CHMIN = <14.0 , inf)	0.237616
	13	MMAX = <1500.0, 4250.0)	0.224479
	14	MMIN = <640.0, 4500.0	
	15	MMAX = <5000.0, 9240.0	0.198756
	16	MMIN = (-inf, 1500.0)	0.198058
	17	MMIN = (-inf, 2150.0)	0.185016
	18	$MYCT = \langle 94.5, inf \rangle$	0.179675
	19	CHMAX = <2.5, 88.0	0.165561
	20	CACH = (-inf, 48.0)	0.154017
	21	CACH = <2.0, 28.0)	0.109025
	22	MMIN = <2310.0, 4500.0)	0.090892
	23	CHMAX = (-inf, 96.0)	0.074887
	24	CHMAX = (-inf, 46.0)	0.066936
	25	CHMAX = <7.0, 22.0)	0.062233

26	CHMAX = (-inf, 40.0)	0.059474
27	CHMAX = <3.5, 22.0	0.056674
28	MMIN = (-inf, 24000.0)	0.054221
29	CHMAX = <2.5, 44.0)	0.049421
30	MMIN = <80.0 , inf)	0.035768
31	CACH = (-inf, 192.0)	0.026516
32	MYCT = <31.5, 102.5)	0.026372
33	$MMIN = \langle 756.0, inf \rangle$	0.003292
34	MYCT = (-inf, 232.5)	-0.033761
35	$MMIN = \langle 884.0, inf \rangle$	-0.069930
36	$CHMAX = \langle 5.5, inf \rangle$	-0.074637
37	MYCT = (-inf, 146.5)	-0.117779
38	MMAX = <9240.0, inf)	-0.123134
39	MYCT = (-inf, 129.0)	-0.151520
40	MYCT = (-inf, 95.0)	-0.191957
41	MMIN = <3000.0, inf)	-0.541514
42	$MYCT = \langle 27.5, 44.0 \rangle$	-1.588076

Local explainability

[16]:	<pre>explainer.local_explainability(x.iloc[0, :], pd.DataFrame(y).iloc[0, :], plot = True)</pre>
	Example:
	vendor adviser
	MYCT 125.0
	MMIN 256.0
	MMAX 6000.0
	CACH 256.0
	CHMIN 16.0
	CHMAX 128.0
	class 199.0
	Name: 0, dtype: object
	Rules that covers this example:
	IF MMIN = (-inf, 2150.0) AND MMAX = <5000.0, 9240.0) AND MYCT = (-inf, 146.5) AND CHMAX
	\rightarrow = <5.5, inf) THEN class = {46.0}
	Importances of the conditions from rules covering the example
	conditions importances
	$0 MMAX = <5000.0, \ 9240.0) \qquad 0.198756$
	1 MMIN = (-inf, 2150.0) 0.185016
	2 CHMAX = <5.5 , inf) -0.074637
	3 MYCT = $(-inf, 146.5)$ -0.117779


```
from rulekit.survival import SurvivalRules
from rulekit.params import Measures
```

```
from rulexai.explainer import RuleExplainer
```

1.3.3 GBSG2

Read data

```
[3]: dataset_path = "./data/GBSG2.arff"
  data = pd.DataFrame(arff.loadarff(dataset_path)[0])
# code to change encoding of the file
  tmp_df = data.select_dtypes([object])
  tmp_df = tmp_df.stack().str.decode("utf-8").unstack()
  for col in tmp_df:
      data[col] = tmp_df[col].replace({"?": None})
  x = data.drop(["survival_status"], axis=1)
  y = data["survival_status"]
```

Train RuleKit model

[4]: # RuleKit

```
RuleKit.init()
```

srv = SurvivalRules(survival_time_attr="survival_time")
srv.fit(values=x, labels=y)

[4]: <rulekit.survival.SurvivalRules at 0x176db91a880>

Rules

[5]: for rule in srv.model.rules: print(rule, rule.stats)

```
IF pnodes = (-inf, 3.50) THEN survival_status = {NaN} (p = 304.0, n = 0.0, P = 564.0, N_
→= 0.0, weight = 0.9999999999999998, pvalue = 2.220446049250313e-16)
IF pnodes = (-inf, 17.50) AND progrec = (-inf, 9.50) AND age = <41.50, 52.50) AND estrec_
\rightarrow = \langle 0.50, 29 \rangle THEN survival_status = {NaN} (p = 21.0, n = 0.0, P = 564.0, N = 0.0,
→weight = 0.999999999999909083, pvalue = 9.09172737095787e-12)
IF pnodes = <4.50, 19) AND progrec = (-inf, 11.50) AND age = <41.50, 64.50) AND estrec =
\rightarrow < 0.50, 41) THEN survival_status = {NaN} (p = 33.0, n = 0.0, P = 564.0, N = 0.0, weight_
\rightarrow= 1.0, pvalue = 0.0)
IF pnodes = <4.50, inf) AND progrec = (-inf, 25.50) THEN survival_status = {NaN} (p =__
\Rightarrow113.0, n = 0.0, P = 564.0, N = 0.0, weight = 1.0, pvalue = 0.0)
IF pnodes = <4.50, inf) AND progrec = (-inf, 99) THEN survival_status = {NaN} (p = 156.0,
\rightarrow n = 0.0, P = 564.0, N = 0.0, weight = 1.0, pvalue = 0.0)
IF pnodes = <5.50, inf) AND progrec = (-inf, 135) THEN survival_status = {NaN} (p = 144.
\rightarrow 0, n = 0.0, P = 564.0, N = 0.0, weight = 1.0, pvalue = 0.0)
IF pnodes = <4.50, inf) AND progrec = (-inf, 233) THEN survival_status = {NaN} (p = 185.
\rightarrow 0, n = 0.0, P = 564.0, N = 0.0, weight = 1.0, pvalue = 0.0)
IF pnodes = (-inf, 4.50) AND progrec = <9, inf) AND age = <39.50, inf) THEN survival_
\rightarrow status = {NaN} (p = 245.0, n = 0.0, P = 564.0, N = 0.0, weight = 1.0, pvalue = 0.0)
IF progrec = <107, inf) THEN survival_status = {NaN} (p = 168.0, n = 0.0, P = 564.0, N =
→0.0, weight = 0.9999999989621143, pvalue = 1.0378856662995872e-09)
IF pnodes = <3.50, inf) AND progrec = (-inf, 105.50) THEN survival_status = {NaN} (p =
\rightarrow195.0, n = 0.0, P = 564.0, N = 0.0, weight = 1.0, pvalue = 0.0)
```

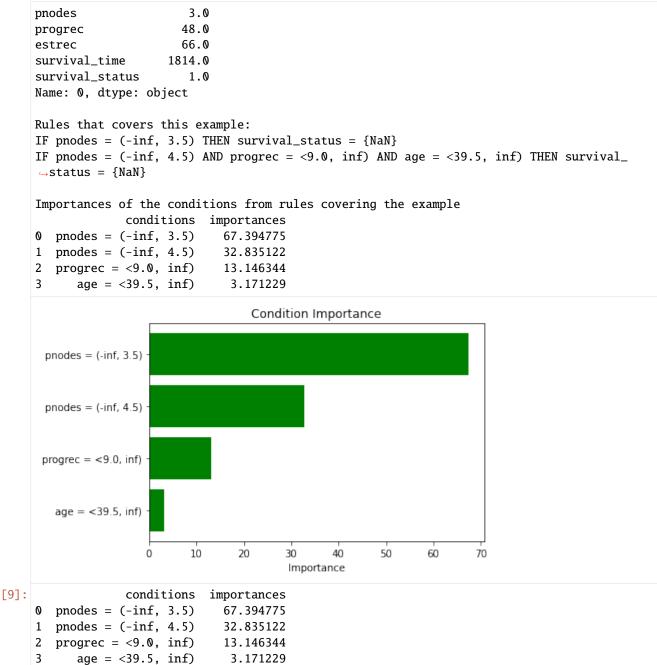
RuleXAI

[6]: explainer = RuleExplainer(model=srv, X=x, y=y, type="survival")
 explainer.explain()

[6]: <rulexai.explainer.RuleExplainer at 0x176db937700>

Feature importance

[']. CAP	Tailler . Tea	ture_importan
[7]: a	ttributes	importances
2	pnodes	460.222804
3	progrec	251.499862
0	age	20.523849
1	estrec	13.347720


Condition importance

[8]: explainer.condition_importances_

[8]:		conditions	importances
	0	pnodes = <4.5 , inf)	-
	1	pnodes = $(-inf, 3.5)$	
	2	pnodes = <5.5 , inf)	64.254026
	3	pnodes = <3.5 , inf)	64.104973
	4	progrec = (-inf, 25.5)	48.923100
	5	progrec = <107.0 , inf)	37.252374
	6	progrec = (-inf, 105.5)	33.962572
	7	progrec = (-inf, 99.0)	33.423755
	8	pnodes = $(-inf, 4.5)$	
	9	progrec = (-inf, 135.0)	
	10	progrec = (-inf, 11.5)	
	11	progrec = (-inf, 9.5)	
	12	pnodes = $<4.5, 19.0$)	
	13	progrec = <9.0 , inf)	13.146344
	14	progrec = (-inf, 233.0)	12.268552
	15	estrec = <0.5, 29.0)	
	16	age = <41.5, 64.5)	9.275232
	17	age = <41.5, 52.5)	8.077389
	18	pnodes = (-inf, 17.5)	
	19	age = <39.5, inf)	3.171229
	20	estrec = <0.5, 41.0)	2.897339

Local explainability

[9]: €	explainer.local_	_explainability(x.iloc[0,	:], pd.DataFrame(y).iloc[0,	:], plot = True)
ł	Example: horTh age	no 70.0		
t	menostat tsize	Post 21.0		
t	tgrade	II		(continues on next page)

1.3.4 Black-box model aproximation

The purpose of this notebook is to demonstrate the possibility of using RuleXAI to explain black box models. The data set titanic from OpenML (https://www.openml.org/d/40945) was used in the analysis. It is a popular data set often used in various types of examples, therefore it was decided to use it in this analysis.

Data load

[48]: import pandas as pd

```
data = pd.read_csv('./data/titanic_openml.csv')
data
```

	pclass							name	\	
0	1	1				len, Miss.				
1	1	1				ison, Mast				
2	1	0				llison, Mi				
3	1					Mr. Hudson		-		
4	1	0	Allis	on, Mrs	. Hudson	J C (Bess	ie Waldo	Daniels)		
1204	•••					7.1				
1304	3	0					our, Miss			
1305	3	0					ur, Miss			
1306	3	0						oriededer		
1307	3 3	0						Ir. Ortin		
1308	3	0				Z	.1mmerman	, Mr. Leo		
	sex	age	sibsp	parch	ticket	fare	cabin	embarked	boat	١
0	female	29.0000	0	0	24160	211.3375	B5	S	2	
1	male	0.9167	1	2	113781	151.5500	C22 C26	S	11	
2	female	2.0000	1	2	113781	151.5500	C22 C26	S		
3	male	30.0000	1	2	113781	151.5500	C22 C26	S	NaN	
4	female	25.0000	1	2	113781	151.5500	C22 C26	S	NaN	
				• • •			•••			
1304	female	14.5000	1	0	2665	14.4542	NaN	C		
1305	female		1	0	2665	14.4542	NaN	C		
1306	male		0	0	2656	7.2250	NaN	C		
1307	male		0	0	2670	7.2250	NaN	C		
1308	male	29.0000	0	0	315082	7.8750	NaN	S	NaN	
	body			h	ome.dest					
0	NaN			St L	ouis, MO					
1	NaN	Montreal,	PQ / C	hesterv	ille, ON					
2	NaN	Montreal,	PQ / C	hesterv	ille, ON					
3	135.0	Montreal,	PQ / C	hesterv	ille, ON					
4	NaN	Montreal,	PQ / C	hesterv	ille, ON					
1204	 328.0				 NoN					
1304					NaN					
1305	NaN 201 0				NaN					
1306 1307	304.0 NaN				NaN NaN					
1308	NaN				NaN					

Dataset overwiev

```
[49]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 14 columns):
             Non-Null Count Dtype
#
    Column
___
   _____
              -----
             1309 non-null
0
    pclass
                            int64
1
    survived 1309 non-null int64
2
            1309 non-null object
    name
3
             1309 non-null object
    sex
             1046 non-null float64
4
    age
 5
            1309 non-null int64
    sibsp
 6
    parch
            1309 non-null int64
7
            1309 non-null object
   ticket
            1308 non-null float64
8
    fare
 9
    cabin
            295 non-null object
10 embarked 1307 non-null object
11 boat
             486 non-null
                            object
12 body
             121 non-null
                            float64
13 home.dest 745 non-null
                            object
dtypes: float64(3), int64(4), object(7)
memory usage: 143.3+ KB
```

```
[52]: numeric_data.describe()
```

[52]:		age	sibsp	parch	fare	body	
	count	1046.000000	1309.000000	1309.000000	1308.000000	121.000000	
	mean	29.881135	0.498854	0.385027	33.295479	160.809917	
	std	14.413500	1.041658	0.865560	51.758668	97.696922	
	min	0.166700	0.00000	0.00000	0.00000	1.000000	
	25%	21.000000	0.00000	0.00000	7.895800	72.000000	
	50%	28.000000	0.000000	0.00000	14.454200	155.000000	
	75%	39.000000	1.000000	0.000000	31.275000	256.000000	
	max	80.00000	8.000000	9.000000	512.329200	328.000000	

```
[53]: caterogical_data.describe()
```

[53] :				name	sex	tic	cket		cabin	embarked	boat	Λ
	count			1309	1309	1	L309		295	1307	486	
	unique			1307	2		929		186	3	27	
	top	Kelly,	Mr.	James	male	CA. 2	2343 (C23 C2	25 C27	S	13	
	freq			2	843		11		6	914	39	

	home.dest
count	745
unique	369
top	New York, NY
freq	64
- 1	

Data preprocessing

In the first stage of data preprocessing it was decided to only remove the columns for Passenger Name, ticket type, cabin, embarked, boat, home.dest, body. Removing the Passenger Name columns is self-explanatory - in no way does Passenger Name have any bearing on whether a person survived. It would only be possible to derive passenger status from passenger name, as there are markings such as 'Mr.', 'Mrs.', 'Miss.', 'Master.'. In case of tickets, the designations for most tickets vary - 681 unique values out of 891 occurrences. One could extract some information from the tickets from their designations (e.g., whether they begin with a number or a letter). However, you would have to consult historical data to find out what the ticket designations mean. In the case of cabin designations, as many as 697 values are missing - for this reason it was decided to remove the entire column, as it carries too little information. On the basis of a similar analysis, the remaining mentioned columns were removed

Of course, the preliminary data analysis and preprocessing stage itself could have been even more extensive - exploring the relationships between features, examining the impact of individual features, plotting graphs to better understand the data. However, the main purpose of this notebook is not to analyze a given set of data in detail, but only to show the possibilities of using the RuleXAI library. For this reason, some simplifications in the analysis have been decided.

[54]:	da	ata.drop	o(["name",	"ticket	", "cabin	", "emb	arked",	"boat", "he	ome.dest",	"body"],	axis=1,
	د_	inplace	e= True)								
	da	ata.rese	et_index(i	nplace= T	rue , drop	= True)					
	da	ata.head	ł(5)								
		-						-			
[54]:		pclass	survived	sex	age	sibsp	parch	fare			
	0	1	1	female	29.0000	0	0	211.3375			
	1	1	1	male	0.9167	1	2	151.5500			
	2	1	0	female	2.0000	1	2	151.5500			
	3	1	0	male	30.0000	1	2	151.5500			
	4	1	0	female	25.0000	1	2	151.5500			

Building black-box model - neural network

In order to demonstrate the possibility of using the RuleXAI library to explain black-box models, it was decided to use the Titanic set to build a neural network to classify whether a given person survived or not. Then, with the help of the RuleXAI library, an analysis will be performed to explain on what basis the neural network model makes decisions.

Since neural networks do not handle missing data and operate only on numerical data, it was necessary to fill in the missing data, perform dummification and scaling.

```
[55]: from sklearn.preprocessing import MinMaxScaler
```

```
data.age = data.age.fillna(data.age.median())
data.fare = data.age.fillna(data.fare.median())
```

```
scaler = MinMaxScaler()
```

```
data_dummies = pd.get_dummies(data.drop(["survived"], axis=1))
     data_dummies = data_dummies.drop(["sex_male"], axis=1)
     data_scaled = pd.DataFrame(scaler.fit_transform(data_dummies),index=data_dummies.index,
      →columns=data_dummies.columns)
     X = data_scaled
     y = data.survived.astype(int)
     X.head(5)
[55]:
                           parch
                                      fare pclass_1 pclass_2 pclass_3 \
             age sibsp
     0 0.361169 0.000 0.000000 0.361169
                                                1.0
                                                          0.0
                                                                    0.0
     1 0.009395 0.125 0.222222 0.009395
                                                 1.0
                                                          0.0
                                                                    0.0
     2 0.022964 0.125 0.222222 0.022964
                                                 1.0
                                                          0.0
                                                                    0.0
     3 0.373695 0.125 0.222222 0.373695
                                                 1.0
                                                          0.0
                                                                    0.0
     4 0.311064 0.125 0.222222 0.311064
                                                 1.0
                                                          0.0
                                                                    0.0
        sex_female
     0
               1.0
     1
               0.0
     2
               1.0
     3
               0.0
     4
               1.0
```

[56]: from sklearn.model_selection import train_test_split

Neural Network learning

```
[66]: from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import Dense, Flatten, Dropout, Input
     from tensorflow.keras.callbacks import EarlyStopping
     model = Sequential()
     model.add(Input(shape=(X_train.shape[1],)))
     model.add(Dense(128, activation='relu'))
     model.add(Dense(64, activation="relu"))
     model.add(Dense(32, activation="relu"))
     model.add(Dense(1, activation="sigmoid"))
     model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
     early_stopping_callback = EarlyStopping(monitor='val_loss', patience=10)
     history = model.fit(X_train.to_numpy(), y_train.to_numpy(), epochs=100, batch_size = 24,...
      walidation_split=0.2, callbacks=[early_stopping_callback])
     Epoch 1/100
     31/31 [========================] - 0s 16ms/step - loss: 0.6153 - accuracy: 0.7254 -
      → val_loss: 0.5677 - val_accuracy: 0.7446
```

Epoch 2/100 31/31 [========================] - 0s 6ms/step - loss: 0.4747 - accuracy: 0.7964 -→val_loss: 0.5232 - val_accuracy: 0.7500 Epoch 3/100 31/31 [=========================] - 0s 7ms/step - loss: 0.4416 - accuracy: 0.8033 - \leftrightarrow val_loss: 0.5081 - val_accuracy: 0.7500 Epoch 4/100 →val_loss: 0.5271 - val_accuracy: 0.7500 Epoch 5/100 31/31 [========================] - 0s 6ms/step - loss: 0.4359 - accuracy: 0.8074 -_ →val_loss: 0.4926 - val_accuracy: 0.7446 Epoch 6/100 31/31 [========================] - 0s 6ms/step - loss: 0.4364 - accuracy: 0.8033 -→val_loss: 0.4932 - val_accuracy: 0.7446 Epoch 7/100 31/31 [=========] - 0s 6ms/step - loss: 0.4268 - accuracy: 0.8156 wal_loss: 0.4931 - val_accuracy: 0.7554 Epoch 8/100 31/31 [========] - 0s 7ms/step - loss: 0.4242 - accuracy: 0.8183 -→val_loss: 0.4920 - val_accuracy: 0.7554 Epoch 9/100 31/31 [=========================] - 0s 7ms/step - loss: 0.4238 - accuracy: 0.8060 -_ →val_loss: 0.4882 - val_accuracy: 0.7609 Epoch 10/100 →val_loss: 0.4997 - val_accuracy: 0.7609 Epoch 11/100 →val_loss: 0.4876 - val_accuracy: 0.7717 Epoch 12/100 31/31 [========================] - 0s 6ms/step - loss: 0.4225 - accuracy: 0.8005 -→val_loss: 0.4904 - val_accuracy: 0.7609 Epoch 13/100 31/31 [=========================] - 0s 6ms/step - loss: 0.4166 - accuracy: 0.8169 - \leftrightarrow val_loss: 0.5062 - val_accuracy: 0.7609 Epoch 14/100 31/31 [========================] - 0s 7ms/step - loss: 0.4222 - accuracy: 0.8183 -→val_loss: 0.4938 - val_accuracy: 0.7554 Epoch 15/100 31/31 [========================] - 0s 7ms/step - loss: 0.4158 - accuracy: 0.8279 -→val_loss: 0.5170 - val_accuracy: 0.7609 Epoch 16/100 31/31 [==================] - 0s 5ms/step - loss: 0.4236 - accuracy: 0.8156 -→val_loss: 0.4919 - val_accuracy: 0.7609 Epoch 17/100 31/31 [========================] - 0s 5ms/step - loss: 0.4185 - accuracy: 0.8128 wal_loss: 0.5000 - val_accuracy: 0.7500 Epoch 18/100 ${\scriptstyle \hookrightarrow} val_loss:$ 0.4982 - val_accuracy: 0.7609 Epoch 19/100

(continued from previous page) 31/31 [==========] - 0s 7ms/step - loss: 0.4131 - accuracy: 0.8210 -→val_loss: 0.4961 - val_accuracy: 0.7717 Epoch 20/100 31/31 [=========================] - 0s 7ms/step - loss: 0.4136 - accuracy: 0.8156 -→val_loss: 0.4820 - val_accuracy: 0.7717 Epoch 21/100 31/31 [========================] - 0s 6ms/step - loss: 0.4162 - accuracy: 0.8169 -→val_loss: 0.4970 - val_accuracy: 0.7717 Epoch 22/100 31/31 [===================================] - 0s 8ms/step - loss: 0.4184 - accuracy: 0.8169 -→val_loss: 0.4944 - val_accuracy: 0.7772 Epoch 23/100 →val_loss: 0.4861 - val_accuracy: 0.7717 Epoch 24/100 31/31 [=======================] - 0s 5ms/step - loss: 0.4156 - accuracy: 0.8183 -→val_loss: 0.4895 - val_accuracy: 0.7772 Epoch 25/100 31/31 [========================] - 0s 5ms/step - loss: 0.4107 - accuracy: 0.8087 -→val_loss: 0.4933 - val_accuracy: 0.7717 Epoch 26/100 →val_loss: 0.4903 - val_accuracy: 0.7717 Epoch 27/100 31/31 [========================] - 0s 5ms/step - loss: 0.4141 - accuracy: 0.8128 -_ →val_loss: 0.5159 - val_accuracy: 0.7772 Epoch 28/100 31/31 [========================] - 0s 5ms/step - loss: 0.4117 - accuracy: 0.8197 wal_loss: 0.4859 - val_accuracy: 0.7717 Epoch 29/100 →val_loss: 0.4802 - val_accuracy: 0.7554 Epoch 30/100 31/31 [===================================] - 0s 5ms/step - loss: 0.4084 - accuracy: 0.8197 -→val_loss: 0.5109 - val_accuracy: 0.7717 Epoch 31/100 31/31 [=========================] - 0s 6ms/step - loss: 0.4086 - accuracy: 0.8251 -_ →val_loss: 0.4889 - val_accuracy: 0.7717 Epoch 32/100 31/31 [========================] - 0s 7ms/step - loss: 0.4055 - accuracy: 0.8183 wal_loss: 0.4891 - val_accuracy: 0.7609 Epoch 33/100 31/31 [========================] - 0s 6ms/step - loss: 0.4055 - accuracy: 0.8156 -→val_loss: 0.5027 - val_accuracy: 0.7826 Epoch 34/100 31/31 [==================] - 0s 5ms/step - loss: 0.4099 - accuracy: 0.8224 -→val_loss: 0.5104 - val_accuracy: 0.7609 Epoch 35/100 31/31 [========================] - 0s 5ms/step - loss: 0.4055 - accuracy: 0.8156 -→val_loss: 0.4831 - val_accuracy: 0.7609 Epoch 36/100 31/31 [=========================] - 0s 5ms/step - loss: 0.4027 - accuracy: 0.8197 -→val_loss: 0.4873 - val_accuracy: 0.7663 (continues on next page)

```
Epoch 37/100

31/31 [===========] - 0s 5ms/step - loss: 0.4069 - accuracy: 0.8265 -..

→val_loss: 0.4992 - val_accuracy: 0.7663

Epoch 38/100

31/31 [=========] - 0s 7ms/step - loss: 0.4013 - accuracy: 0.8251 -..

→val_loss: 0.4923 - val_accuracy: 0.7717

Epoch 39/100

31/31 [======] - 0s 8ms/step - loss: 0.4010 - accuracy: 0.8265 -..

→val_loss: 0.4875 - val_accuracy: 0.7500
```

[14]: model.save("./models/nn", save_format = 'h5')

Model evaluation on training and test set

```
[67]: from sklearn.metrics import balanced_accuracy_score, accuracy_score
import numpy as np
train_acc = np.round(accuracy_score(y_train, model.predict(X_train)>0.5),3)
train_bacc = np.round(balanced_accuracy_score(y_train, model.predict(X_train)>0.5),3)
print(f"NN model train accuracy: {train_acc}")
print(f"NN model train bacc: {train_bacc}")
test_acc = np.round(accuracy_score(y_test, model.predict(X_test)>0.5),3)
test_bacc = np.round(balanced_accuracy_score(y_test, model.predict(X_test)>0.5),3)
print(f"NN model test accuracy: {test_acc}")
print(f"NN model test accuracy: {test_acc}")
NN model train accuracy: 0.816
NN model train bacc: 0.793
NN model test bacc: 0.794
```

Since the purpose of the analysis is not to create the best possible black-box model, but only to show the possibility of its explanation, it was concluded that the model obtaining a balanced accuracy of 0.793 on the training set and 0.794 on the test set is sufficient. Of course, testing other network architectures would yield better results, but that is not the purpose of this notebook.

RuleXAI

The RuleXAI library enables the explanation of black-box models by approximating the black-box model with a rule model. This is possible by replacing the decision variable in the dataset with decisions made by the network and teaching the rule model on that dataset. The rule-based model will therefore learn to map the data set to the decisions made by the black-box model. It is also worth noting that the rule-based model can then be trained on the original set (containing nominal and missing attributes). Such a procedure will facilitate the analysis. Instead of the conditions Sex_female = $\{0\}$, the condition set will have the condition Sex = $\{male\}$

[68]: import numpy as np

```
(continued from previous page)
```

```
y_train_nn_decisions = np.array(list(map(int, model.predict(X_train)>0.5)))
     y_test_nn_decisions = np.array(list(map(int, model.predict(X_test)>0.5)))
     y_train_nn_df = pd.DataFrame(y_train_nn_decisions, columns=["label"]).astype(str)
     X_org = data.drop(["survived"], axis=1)
     y_org = data.survived
     X_train_org = X_org.loc[X_train.index,:]
     X_test_org = X_org.loc[X_test.index,:]
     X_train_org.reset_index(inplace=True, drop=True)
     X_train_org.head(5)
[68]:
                        age sibsp parch fare
      pclass
                  sex
                                        0 28.0
     0
            3
                 male 28.0
                                 0
     1
            3
                 male 26.0
                                 0
                                        0 26.0
     2
            2 female 19.0
                                 0
                                        0 19.0
     3
            3 female 28.0
                                 8
                                        2 28.0
     4
            3 female 28.0
                                 0
                                        0 28.0
```

```
[101]: from rulexai.explainer import Explainer
```

```
[102]: explainer.explain(X_org=X_train_org)
```

```
[102]: <rulexai.explainer.Explainer at 0x18b72d3a640>
```

The approach to explaining black-box models with rule models is often already considered as the explainability of such models. When analyzing the resulting rules, certain conclusions can be drawn. The use of the RuleXAI library allows to go a step further - obtaining information about the importance of features and specific ranges of these features. This will enable a more in-depth analysis of the dataset and the black-box model.

Rules describing the black-box model

```
[91]: for rule in explainer.get_rules():
    print(rule)
IF sex = {male} AND age = <8.5, 47.5) THEN label = {0}
IF sex = {male} AND age = <8.5, inf) THEN label = {0}
IF sex = {male} AND age = <4.5, 47.5) THEN label = {0}
IF pclass = {3} AND sibsp = <1.5, inf) AND age = <0.96, inf) THEN label = {0}
IF pclass = {3} AND sibsp = <0.5, inf) AND age = <28.25, inf) AND parch = <0.5, inf)_____
THEN label = {0}
IF pclass = {3} AND age = <27.5, 44.5) AND parch = <0.5, inf) THEN label = {0}
IF sex = {female} AND sibsp = (-inf, 1.5) AND parch = (-inf, 2.5) THEN label = {1}
IF sex = {female} AND sibsp = (-inf, 2.5) AND parch = (-inf, 3.5) THEN label = {1}
IF age = (-inf, 0.96) THEN label = {1}
IF sibsp = (-inf, 2.5) AND age = (-inf, 4.5) THEN label = {1}
IF pclass = {1} AND sibsp = <1.5, inf) THEN label = {1}</pre>
```

```
IF pclass = {1} AND sibsp = <0.5, inf) AND age = <46.5, inf) AND parch = (-inf, 0.5)

\rightarrow THEN label = {1}

IF sibsp = (-inf, 3.5) AND parch = (-inf, 4.5) AND age = (-inf, 60.25) THEN label = {1}
```

Quality of the black-box model approximation

```
[103]: rc = explainer.model.model
```

```
train_acc = np.round(accuracy_score(y_train_nn_decisions, rc.predict(X_train_org).
\rightarrowastype(int)),3)
train_bacc = np.round(balanced_accuracy_score(y_train_nn_decisions, rc.predict(X_train_
\rightarrow org).astype(int)),3)
print(f"Rule model train accuracy: {train_acc}")
print(f"Rule model train bacc: {train_bacc}")
test_acc = np.round(accuracy_score(y_test_nn_decisions, rc.predict(X_test_org).
\rightarrowastype(int)),3)
test_bacc = np.round(balanced_accuracy_score(y_test_nn_decisions, rc.predict(X_test_org).
→astype(int)),3)
print(f"Rule model test accuracy: {test_acc}")
print(f"Rule model test bacc: {test_bacc}")
Rule model train accuracy: 0.971
Rule model train bacc: 0.968
Rule model test accuracy: 0.964
Rule model test bacc: 0.966
```

Rule condition importance

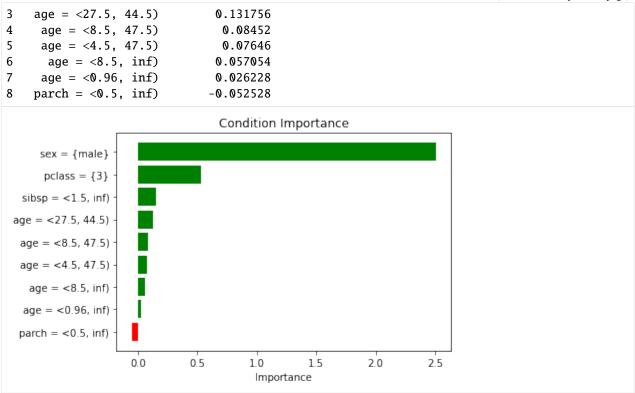
[94]: explainer.condition_importances_

[94]:	0 conditions_names	0 importances	1 conditions_names	1 importances
0	<pre>sex = {male}</pre>	2.506576	<pre>sex = {female}</pre>	1.095350
1	$pclass = \{3\}$	0.532272	age = (-inf, 0.96)	0.516234
2	parch = <4.5, inf)	0.506579	age = (-inf, 4.5)	0.449048
3	sibsp = <1.5, inf)	0.156118	$pclass = \{1\}$	0.428375
4	age = <27.5, 44.5)	0.131756	sibsp = (-inf, 2.5)	0.126061
5	age = <8.5, 47.5)	0.08452	sibsp = <0.5, inf)	0.111988
6	age = <4.5, 47.5)	0.07646	sibsp = <1.5, inf)	0.092592
7	age = < 8.5 , inf)	0.057054	age = <46.5, inf)	0.089966
8	age = <28.25, inf)	0.041569	sibsp = (-inf, 1.5)	0.031061
9	age = <0.96 , inf)	0.026228	parch = (-inf, 2.5)	0.012163
10	sibsp = <0.5 , inf)	-0.014897	parch = (-inf, 0.5)	0.011806
11	parch = <0.5 , inf)	-0.052528	parch = (-inf, 3.5)	0.011632
12	-	-	sibsp = (-inf, 3.5)	0.010848
13	-	-	parch = (-inf, 4.5)	0.003102
14	-	-	age = (-inf, 60.25)	0.002035

Looking at the ranking of conditions obtained with the help of the RuleXAI library, it can be noticed that the greatest influence on the decision made by the black-box model as to whether a given person survived or not was gender. The

most important condition indicating that the person survived is $Sex = \{female\}$, and the most important condition indicating that the person did not survive is $Sex = \{male\}$. It is intuitive and logical - the first women were rescued. Then it can be seen that the age of the person had a big impact on whether the person survived - children aged 0 to 4.5 had a greater chance of survival. Looking at the ranking on the impact of conditions on the fact that a given person did not survive, it can be seen that apart from the fact that the person was a man, it was also influenced by the fact that they traveled in 3rd class - it is also consistent with historical knowledge and logic - the first rescued there were more affluent people.

Feature importance


[105]:	expla	iner.feature	_importances_			
[105]:	0	attributes	0 importances 1	attributes	1 importances	
	0	sex	2.506576	sex	1.095350	
	1	pclass	0.532272	age	1.057283	
	2	parch	0.454051	pclass	0.428375	
	3	age	0.417587	sibsp	0.372549	
	4	sibsp	0.141221	parch	0.038703	

Looking at the global ranking of features importance, it can be seen that the most important features that influenced whether a person survived or not were gender, age, and the class they traveled. It is intuitive.

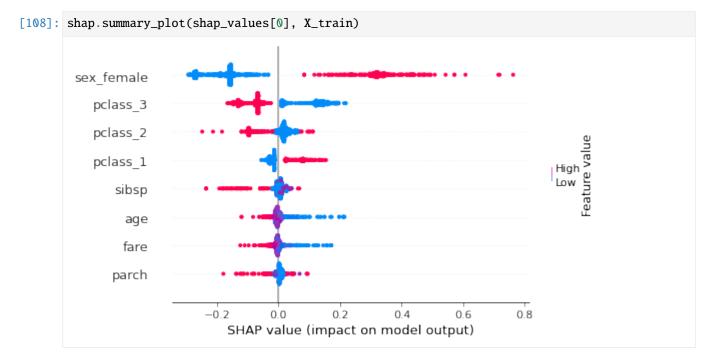
Local explainability

```
[75]: y_test_nn_df = pd.DataFrame(y_test_nn_decisions, columns=["label"])
X_test_org.reset_index(inplace=True, drop=True)
```

```
Example:
pclass
             3
sex
          male
          28.0
age
             8
sibsp
             2
parch
fare
          28.0
label
             0
Name: 10, dtype: object
Rules that covers this example:
IF sex = {male} AND age = (8.5, 47.5) THEN label = {0}
IF sex = {male} AND age = <8.5, inf) THEN label = {0}
IF sex = {male} AND age = <4.5, 47.5) THEN label = {0}
IF pclass = \{3\} AND sibsp = <1.5, inf) AND age = <0.96, inf) THEN label = \{0\}
IF pclass = \{3\} AND age = <27.5, 44.5) AND parch = <0.5, inf) THEN label = \{0\}
Importances of the conditions from rules covering the example
  0 | conditions_names 0 | importances
          sex = {male}
0
                               2.506576
          pclass = \{3\}
                               0.532272
1
2
    sibsp = <1.5, inf)
                               0.156118
```

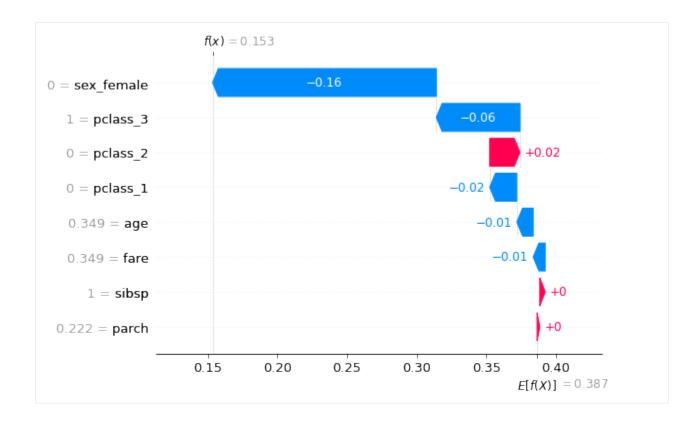

Looking at the local explainability for an example from a test set, returned by the RuleXAI library, it can be seen what rules explaining the black-box model cover the given example. The chart of the importance of the conditions also shows that the condition $Sex = \{male\}$ had the greatest influence on the model making such a decision. Subsequently, the fact that a given person did not survive was due to the fact that they traveled 3rd class and had more than 1 relative on board

SHAP


In order to compare the results and conclusions of the explainability of the black-box model with the help of the RuleXAI library, it was decided to explain the model also with the help of the SHAP library [https://shap.readthedocs. io/en/latest/index.html]. The SHAP library is one of the currently most popular and widely used libraries for black-box model explainability.

```
[106]: import shap
```

```
shap.initjs()
```


<IPython.core.display.HTML object>

Global ranking

Comparing the ranking obtained using the SHAP library with the rankings obtained using the RuleXAI library, similar conclusions can be reached. The biggest influence on whether a person survived was whether person was female or not. The next most important attributes concern which class the person traveled in. These conclusions are in line with those drawn on the basis of the ranking obtained with the RuleXAI library.

Local explainability

Comparing the local explainability for the same example obtained using the RuleXAI library and SHAP, similar conclusions can be made: the greatest influence on the decision made by the model for this example was that the person was male. This was followed by the influence that the person was traveling 3rd class. Care must be taken when interpreting this graph as the input values of the black-box model, were scaled.

1.3.5 Dataset transformation

The RuleXAI library can also be used to transform a dataset. Often datasets contain missing values and nominal values. Most available algorithms do not support either missing values or nominal values. Many algorithms require the data to be rescaled beforehand. The RuleXAI library is able to convert a dataset with nominal and missing values into a binary dataset containing as attributes the conditions describing the dataset and as values "1" when the condition is satisfied for the example and "0" when the condition is not satisfied.

The data used in this notebook comes from https://sci2s.ugr.es/keel/missing.php?order=mis#sub2. It is an Australian dataset that has 14 attributes: 8 numeric and 6 nominal and 690 examples. 70% of this dataset are missing values. The attributes of this dataset are described below.

@relation australian+MV
@attribute A1 {0, 1}
@attribute A2 real[16.0,8025.0]
@attribute A3 real[0.0,26335.0]
@attribute A4 {1, 2, 3}
@attribute A5 integer[1,14]
@attribute A6 integer[1,9]
@attribute A7 real[0.0,14415.0]

@attribute A8 {0, 1}
@attribute A9 {0, 1}
@attribute A10 integer[0,67]
@attribute A11 {0, 1}
@attribute A12 {1, 2, 3}
@attribute A13 integer[0,2000]
@attribute A14 integer[1,100001]
@attribute Class {0,1}
@inputs A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14
@output Class
@data

Data load

```
[1]: import pandas as pd
import numpy as np
train_df = pd.read_csv("./data/australian_train.csv")
test_df = pd.read_csv("./data/australian_test.csv")
train_df[["A1","A4", "A8", "A9", "A11", "A12", "Class"]] = train_df[["A1","A4", "A8", "A9
...,", "A11", "A12", "Class"]].astype(str)
test_df[["A1","A4", "A8", "A9", "A11", "A12", "Class"]] = test_df[["A1","A4", "A8", "A9",
..., "A11", "A12", "Class"]].astype(str)
for column in train_df.select_dtypes('object').columns.tolist():
    train_df[column] = train_df[column].apply(lambda x: x.split(".")[0]).replace({"nan":_
...,None})
    test_df[column] = test_df[column].apply(lambda x: x.split(".")[0]).replace({"nan":_
...,None})
```

```
[2]: train_df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 621 entries, 0 to 620 Data columns (total 15 columns): # Column Non-Null Count Dtype _____ _ _ _ _____ ____ 0 A1 559 non-null object 569 non-null float64 1 A2 2 A3 554 non-null float64 3 A4 541 non-null object 4 568 non-null float64 A5 5 A6 556 non-null float64 6 559 non-null float64 Α7 7 A8 560 non-null object 8 A9 567 non-null object 9 A10 563 non-null float64 10 A11 561 non-null object 549 non-null 11 A12 object 12 A13 558 non-null float64

13 A14 561 non-null float64 14 Class 621 non-null object dtypes: float64(8), object(7) memory usage: 72.9+ KB

```
[3]: test_df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 69 entries, 0 to 68
Data columns (total 15 columns):
 #
     Column Non-Null Count Dtype
_ _ _
     _____
             _____
                              ____
                              object
0
     A1
             69 non-null
1
     A2
             69 non-null
                              float64
 2
             69 non-null
     A3
                              float64
 3
     A4
             69 non-null
                              object
 4
    Α5
             69 non-null
                              float64
                              float64
 5
    A6
             69 non-null
             69 non-null
 6
                              float64
     A7
 7
     A8
             69 non-null
                              object
 8
     A9
             69 non-null
                              object
 9
     A10
             69 non-null
                              float64
             69 non-null
 10
    A11
                              object
    A12
             69 non-null
                              object
 11
 12
    A13
             69 non-null
                              float64
 13
    A14
             69 non-null
                              float64
 14
    Class
             69 non-null
                              object
dtypes: float64(8), object(7)
memory usage: 8.2+ KB
```

[4]: train_org = train_df.copy() test_org = test_df.copy()

A2

NaN

0

1

1

0

1

A3 A4

1

1

2

2

446.0 2 11.0 8.0

175.0

115.0

817.0

65.0

Α5

4.0

5.0

6.0

3.0

A6

4.0

3.0

4.0

4.0

A7 A8

0

1

1

0

1

125.0

196.0

125.0

304.0

0.0

A9

1

1

1

None

None

A10 A11

1

1

0

0

0

0.0

NaN

0.0

6.0

11.0

Data preprocessing

· original data

```
[5]: train_df.head(5)
```

```
A1
[5]:
               2958.0
     0
            0
     1
            0
     2
            1
               2017.0
     3
            1
               1742.0
     4
        None
               5867.0
           A14 Class
           1.0
     0
     1
           1.0
     2
       159.0
     3
       101.0
     4
        561.0
```

A12

None

2

2

2

2

A13 \backslash

280.0

0.0

60.0

NaN

43.0

imputation of missing values

```
[6]: cateogry_columns=train_df.select_dtypes('object').columns.tolist()
number_columns=train_df.select_dtypes('number').columns.tolist()
for column in train_df:
    if train_df[column].isnull().any():
        if(column in cateogry_columns):
            train_df[column].fillna(train_df[column].mode()[0], inplace=True)
        else:
            train_df[column].fillna(train_df[column].mean(), inplace=True)
```

```
[7]: train_df.head(5)
```

[7]:		A1		A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	\setminus
	0	0	2958.000	000	175.0	1	4.0	4.0	125.0	0	0	0.00000	1	2	
	1	0	2693.896	309	115.0	1	5.0	3.0	0.0	1	1	11.00000	1	2	
	2	1	2017.000	000	817.0	2	6.0	4.0	196.0	1	1	2.49556	0	2	
	3	1	1742.000	000	65.0	2	3.0	4.0	125.0	0	0	0.00000	0	2	
	4	1	5867.000	000	446.0	2	11.0	8.0	304.0	1	1	6.00000	0	2	
			A13	A1	4 Clas	ss									
	0	28	0.000000	1.	0	0									
	1		0.000000	1.	0	1									
	2	6	0.000000	159.	0	1									

• one hot encoding

3 185.802867 101.0

43.000000 561.0

4

```
[]: data = pd.concat([train_df, test_df], axis = 0)
data.reset_index(drop=True,inplace=True)
data_with_dummies = pd.get_dummies(data.drop(["Class"], axis=1))
```

0

1

```
train_df_encoded = data_with_dummies[:train_df.shape[0]]
train_df_encoded["Class"] = data[:train_df.shape[0]]["Class"]
```

```
test_df_encoded = data_with_dummies[train_df.shape[0]:]
test_df_encoded["Class"] = data[train_df.shape[0]:]["Class"]
```

[9]: train_df_encoded.head(5)

:			A	2	A3	A5	A6		A7	A10		A13	A14	A1_0	\setminus
0	0	2958	. 00000	0 175	5.0	4.0	4.0	125	.0 0	.00000	280.000	000	1.0	1	
-	1	2693	.89630	9 115	5.0	5.0	3.0	0	.0 11	.00000	0.000	000	1.0	1	
2	2	2017	. 00000	0 817	7.0	6.0	4.0	196	.0 2	.49556	60.000	000 1	59.0	0	
3	3	1742	. 00000	0 65	5.0	3.0	4.0	125	.0 0	.00000	185.802	867 10	01.0	0	
4	1	5867	. 00000	0 446	5.0	11.0	8.0	304	.0 6	.00000	43.000	000 56	51.0	0	
		A1_1		A8_0	A8_	1 A9	_0	A9_1	A11_0	A11_1	A12_1	A12_2	A12_	3 Cla	SS
0	0	0		1		0	1	0	0	1	0	1	(0	0
-	1	0		0		1	0	1	0	1	0	1	(0	1
2	2	1		0		1	0	1	1	0	0	1	(9	1
3	3	1		1		0	1	0	1	0	0	1	(9	0
														,	

• n • n • n • scaler train_ train_ + fit_ test_0 • train_ • fit_ • fit_ • fit_ • fit_ • fit_ • o fit_	er = Sta df_enco transf .df_enco .df_enco .nsform(df_enco .nsform(df_enco .nsform(df_enco .nsform(df_enco .nsform(ation ation .prepro andardSo coded_ar coded_ar coded_and form(tra oded_and form(tra coded_and forde	caler() nd_scal nd_scal ain_df_ d_scale f_encod nd_scal A3 773 -0. 201 -0. 484 -0. 059 -1.	ng impo led = t: led[['A ed = te: ed[['A2 led.hea led.hea A5 .952571 .667503 .382434 .237640	rain_c 2','A3 d[['A2 st_df_ ','A3' 2','A3 2','A3 d(5) -0.35 -0.35 -0.35	andar lf_en 3','A 2','A -enco ','A5 3','A -6525 37967 56525 56525	coded. 5','A6 3','A5 ded.co ','A6' 5','A6 -0.24 -0.23 -0.18	copy() ', 'A7 ','A6' py() , 'A7' ', 'A7 ', 'A7 0176 - 1488 8311	', 'A10 , 'A7', , 'A10' ', 'A10 A1 0.51837 1.76652 0.00000	'A10', , 'A13' ', 'A13 0 3 5.50 5 -1.08 0 -7.35	'A13', , 'A14'] ', 'A14' A13 8121e-01 6471e+00 6248e-01] = scaler.]]) \
• n]: from s scaler train_ train_ train_ train_ train_ c→fit_ test_c test_c o 0.1 1 0.0 2 -0.4 3 -0.6 4 2.1 0 -0.1 1 -0.1 2 -0.1	normaliz: sklearn er = Sta _df_enco _df_enco .df_en	ation .prepro andardSo coded_ar coded_and oded_and ded_and ftest_df coded_ar -0.3487 -0.3702 -0.1194 -0.3880	caler() nd_scal nd_scal ain_df_ d_scale f_encod nd_scal A3 773 -0. 201 -0. 484 -0. 059 -1.	Led = t: Led[['A _encode ed = te: ed[['A2 led.hea A5 .952571 .667503 .382434 .237640	rain_c 2','A3 d[['A2 st_df_ ','A3' 2','A3 2','A3 d(5) -0.35 -0.35 -0.35	lf_en 3','A 2','A -enco ','A5 3','A 6525 37967 56525 56525	coded. 5','A6 3','A5 ded.co ','A6' 5','A6 -0.24 -0.23 -0.18	copy() ', 'A7 ','A6' py() , 'A7' ', 'A7 ', 'A7 0176 - 1488 8311	', 'A10 , 'A7', , 'A10' ', 'A10 A1 0.51837 1.76652 0.00000	'A10', , 'A13' ', 'A13 0 3 5.50 5 -1.08 0 -7.35	'A13', , 'A14'] ', 'A14' A13 8121e-01 6471e+00 6248e-01	'A14']])] = scaler.]])
<pre>]: from s scaler train_ train_ +fit_ test_0 test_0 +train_]: train_ 1 0.0 2 -0.4 3 -0.6 4 2.1 0 -0.1 1 -0.1 2 -0.1</pre>	sklearn er = Sta _df_enc _df_enc df_enc df_enc df_enc df_enc 182967 000000 468944 659460 198282	andardSo coded_ar coded_ar coded_anc coded_anc (test_df coded_ar coded_ar -0.3487 -0.3702 -0.1194 -0.3880	caler() nd_scal nd_scal ain_df_ d_scale f_encod nd_scal A3 773 -0. 201 -0. 484 -0. 059 -1.	Led = t: Led[['A _encode ed = te: ed[['A2 led.hea A5 .952571 .667503 .382434 .237640	rain_c 2','A3 d[['A2 st_df_ ','A3' 2','A3 2','A3 d(5) -0.35 -0.35 -0.35	lf_en 3','A 2','A -enco ','A5 3','A 6525 37967 56525 56525	coded. 5','A6 3','A5 ded.co ','A6' 5','A6 -0.24 -0.23 -0.18	copy() ', 'A7 ','A6' py() , 'A7' ', 'A7 ', 'A7 0176 - 1488 8311	', 'A10 , 'A7', , 'A10' ', 'A10 A1 0.51837 1.76652 0.00000	'A10', , 'A13' ', 'A13 0 3 5.50 5 -1.08 0 -7.35	'A13', , 'A14'] ', 'A14' A13 8121e-01 6471e+00 6248e-01	'A14']])] = scaler.]])
<pre>scaler train_ train_ fit_ test_0 test_0 scaler test_0 scaler train_ train_ scaler train_ train_ scaler train_ scaler train_ train_ train_ train_ train_ test_scaler test_sca</pre>	er = Sta df_enc transf .df_enco .df_enco .df_enco .df_enco .df_enco .asform(df_enco .asform(df_enco .asform() .asform() .asform	andardSo coded_ar coded_ar coded_and coded_and (test_df coded_ar -0.3487 -0.3702 -0.1194 -0.3880	caler() nd_scal nd_scal ain_df_ d_scale f_encod nd_scal A3 773 -0. 201 -0. 484 -0. 059 -1.	Led = t: Led[['A _encode ed = te: ed[['A2 led.hea A5 .952571 .667503 .382434 .237640	rain_c 2','A3 d[['A2 st_df_ ','A3' 2','A3 2','A3 d(5) -0.35 -0.35 -0.35	lf_en 3','A 2','A -enco ','A5 3','A 6525 37967 56525 56525	coded. 5','A6 3','A5 ded.co ','A6' 5','A6 -0.24 -0.23 -0.18	copy() ', 'A7 ','A6' py() , 'A7' ', 'A7 ', 'A7 0176 - 1488 8311	', 'A10 , 'A7', , 'A10' ', 'A10 A1 0.51837 1.76652 0.00000	'A10', , 'A13' ', 'A13 0 3 5.50 5 -1.08 0 -7.35	'A13', , 'A14'] ', 'A14' A13 8121e-01 6471e+00 6248e-01	'A14']])] = scaler.]])
train_ train_ train_ .→fit_ test_0 .↓train_]: train_]: train_]: 0 0.1 1 0.0 2 -0.4 3 -0.6 4 2.1 0 -0.1 1 -0.1 2 -0.1	dfenc dfencdfenc dfenc dfencdfenc dfencdfenc dfencdfenc dfenc_d	coded_ar coded_ar form(tra oded_and test_df coded_ar coded_ar -0.3487 -0.3702 -0.1194 -0.3880	nd_scal nd_scal ain_df_ d_scale f_encod nd_scal A3 773 -0. 201 -0. 484 -0. 359 -1.	Led = t: Led[['A _encoded ed = te: ed[['A2 led.head 	2','A3 d[['A2 st_df_ ','A3' 2','A3 2','A3 d(5) -0.35 -0.35 -0.35	3', 'A 2', 'A 2', 'A 2', 'A 3', 'A 6525 37967 56525 56525	5','A6 3','A5 ded.co ','A6' 5','A6 5','A6 -0.24 -0.23 -0.18	', 'A7 ', 'A6' py() , 'A7' ', 'A7 ', 'A7 0176 - 1488 8311	', 'A10 , 'A7', , 'A10' ', 'A10 A1 0.51837 1.76652 0.00000	'A10', , 'A13' ', 'A13 0 3 5.50 5 -1.08 0 -7.35	'A13', , 'A14'] ', 'A14' A13 8121e-01 6471e+00 6248e-01	'A14']])] = scaler.]])
train_ → fit_ test_0 test_0 → tran]: train_]: train_]: 0 0.1 1 0.0 2 -0.4 3 -0.6 4 2.1 0 -0.1 1 -0.1 2 -0.1	_df_enco .df_enco .df_enco .nsform(_df_enco .nsform(_42 182967 000000 468944 659460 198282	coded_and coded_and coded_and ctest_df coded_and ctest_df coded_and coded_coded_coded_coded_coded_coded co	nd_scal ain_df_ d_scale d_scale f_encod nd_scal A3 773 -0. 201 -0. 484 -0. 059 -1.	Led[['A _encode ed = tex ed[['A2 ded[['A Led.hea A5 .952571 .667503 .382434 .237640	2','A3 d[['A2 st_df_ ','A3' 2','A3 2','A3 d(5) -0.35 -0.35 -0.35	3', 'A 2', 'A 2', 'A 2', 'A 3', 'A 6525 37967 56525 56525	5','A6 3','A5 ded.co ','A6' 5','A6 5','A6 -0.24 -0.23 -0.18	', 'A7 ', 'A6' py() , 'A7' ', 'A7 ', 'A7 0176 - 1488 8311	', 'A10 , 'A7', , 'A10' ', 'A10 A1 0.51837 1.76652 0.00000	'A10', , 'A13' ', 'A13 0 3 5.50 5 -1.08 0 -7.35	'A13', , 'A14'] ', 'A14' A13 8121e-01 6471e+00 6248e-01	'A14']])] = scaler.]])
test_d →tran]: train_]: 0 0.1 1 0.0 2 -0.4 3 -0.6 4 2.1 0 -0.1 1 -0.1 2 -0.1	df_enco nsform(A2 182967 000000 468944 659460 198282	oded_and (test_d1 coded_ar -0.3487 -0.3702 -0.1194 -0.3880	d_scale f_encod A3 773 -0. 201 -0. 484 -0. 059 -1.	ed[['A2 led[['A led.hea A5 .952571 .667503 .382434 .237640	-0.35 -0.35 -0.35 -0.35 -0.35	A6 65 65 25 79 65 25 56 52 5 65 25	-0.24 -0.33 -0.18	A7 0176 - 1488 8311	A1 A1 0.51837 1.76652 0.00000	', 'A13 0 3 5.50 5 -1.08 0 -7.35	A13 A13 8121e-01 6471e+00 6248e-01)
0 0.1 1 0.0 2 -0.4 3 -0.6 4 2.1 0 -0.1 1 -0.1 2 -0.1	A2 182967 000000 468944 659460 198282	-0.3487 -0.3702 -0.1194 -0.3880	A3 773 -0. 201 -0. 484 -0. 059 -1.	A5 952571 667503 382434 237640	-0.35 -0.88 -0.35 -0.35	56525 37967 56525 56525	-0.24 -0.33 -0.18	0176 - 1488 8311	0.51837 1.76652 0.00000	3 5.50 5 -1.08 0 -7.35	8121e-01 6471e+00 6248e-01	,
$\begin{array}{c} 0 & 0.1 \\ 1 & 0.0 \\ 2 & -0.4 \\ 3 & -0.6 \\ 4 & 2.1 \\ \end{array}$ $\begin{array}{c} 0 & -0.1 \\ 1 & -0.1 \\ 2 & -0.1 \end{array}$	182967 000000 468944 659460 198282	-0.3702 -0.1194 -0.3880	773 -0. 201 -0. 484 -0. 059 -1.	952571 667503 382434 237640	-0.35 -0.88 -0.35 -0.35	56525 37967 56525 56525	-0.24 -0.33 -0.18	0176 - 1488 8311	0.51837 1.76652 0.00000	3 5.50 5 -1.08 0 -7.35	8121e-01 6471e+00 6248e-01	,
1 -0.1 2 -0.1	A14					55644	-0.10				0313e-01	
1 -0.1 2 -0.1	N14	Δ1 ()	A1_1	A	8_0 <i>I</i>	1 8 1	A9_0	A9_1	A11_0	A11_1	A12_1	λ.
2 -0.1	196556	л1_0 1	-	A	0_0 <i>r</i> 1	10_1 0	лэ_0 1	N9_1 0	0_11A	1 I	0	X .
	196556	1	_		0	1	0	1	0	1	0	
3 -0.1	166737	0	1		0	1	0	1	1	0	0	
	177684	0	1		1	0	1	0	1	0	0	
4 -0.0	090868	0	1	•••	0	1	0	1	1	0	0	
A12	.2_2 A1	2_3 C1	lass									
0	1	0	0									
1	1	0	1									
2	1	0	1									
3	1	0	0									
4	1	0	1									
[5 rov	ws x 23	8 columr	ns]									
]: X_trai)		
y_trai	in = tr	rain_df_	_encode	ed_and_	scaled	d.dro	p(colu	mns =	"Class")		

y_test = test_df_encoded_and_scaled["Class"]

Building a Random Forest model on a preprocessed dataset

[13]: from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import balanced_accuracy_score

```
clf = RandomForestClassifier(random_state=42)
```

- clf.fit(X_train, y_train)
- [13]: RandomForestClassifier(random_state=42)

Balanced accuracy on training set

[14]: balanced_accuracy_score(y_train,clf.predict(X_train))

[14]: 1.0

Balanced accuracy on test set

- [15]: balanced_accuracy_score(y_test,clf.predict(X_test))
- [15]: 0.8153846153846154

Using RuleXAI to transform the original set

```
[16]: X_train_org = train_org.drop(columns = "Class")
y_train_org = train_org["Class"]
X_test_org = test_org.drop(columns = "Class")
y_test_org = test_org["Class"]
```

```
[17]: X_train_org.head(5)
```

[17]:		A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	\setminus
	0	0	2958.0	175.0	1	4.0	4.0	125.0	0	None	0.0	1	2	280.0	
	1	0	NaN	115.0	1	5.0	3.0	0.0	1	1	11.0	1	None	0.0	
	2	1	2017.0	817.0	2	6.0	4.0	196.0	1	1	NaN	0	2	60.0	
	3	1	1742.0	65.0	2	3.0	4.0	125.0	0	None	0.0	0	2	NaN	
	4	None	5867.0	446.0	2	11.0	8.0	304.0	1	1	6.0	0	2	43.0	
		A14													
	0	1.0													
	1	1.0													
	2	159.0													
	3	101.0													
	4	561.0													

[18]: from rulexai.explainer import Explainer

```
[19]: X_train_tranformed = explainer.fit_transform(X_train_org, selector=None)
[20]: X_train_tranformed.head(5)
[20]: A2 = \langle 19.0, 7037.5 \rangle A8 = \{0\} A10 = (-inf, 10.5) A13 = (-inf, 216.0)
      0
                             1
                                         1
                                                                                       0
                                                               1
      1
                             0
                                         0
                                                               0
                                                                                       1
      2
                             1
                                         0
                                                               0
                                                                                       1
      3
                                                                                       0
                              1
                                         1
                                                               1
      4
                             1
                                         0
                                                               1
                                                                                       1
         A5 = (-inf, 1.5) A2 = <2445.5, 4429.0) A5 = (-inf, 3.5) A9 = {0} \setminus
      0
                          0
                                                    1
                                                                        0
                                                                                   0
      1
                          0
                                                    0
                                                                        0
                                                                                   0
      2
                          0
                                                    0
                                                                        0
                                                                                   0
      3
                          0
                                                    0
                                                                        1
                                                                                   0
      4
                          0
                                                    0
                                                                        0
                                                                                   0
         A2 = <1816.5, 3779.0) A13 = <110.0, inf) ... A6 = <2.0, inf)
                                                                                  \backslash
      0
                                1
                                                      1
                                                                               1
                                                         . . .
      1
                                0
                                                      0
                                                                               1
                                                          . . .
      2
                                1
                                                      0
                                                                               1
                                                          . . .
      3
                                0
                                                      0
                                                                               1
                                                          . . .
      4
                                0
                                                      0
                                                                               1
                                                          . . .
         A7 = <168.0, inf) A2 = <29.5, inf) A3 = (-inf, 12.5) A5 = <7.5, inf) \land
      0
                           0
                                               1
                                                                     0
                                                                                        0
      1
                           0
                                               0
                                                                     0
                                                                                        0
      2
                                                                     0
                                                                                        0
                           1
                                               1
      3
                           0
                                               1
                                                                     0
                                                                                        0
      4
                           1
                                               1
                                                                     0
                                                                                        1
         A14 = (-inf, 1069.5) A3 = (-inf, 1080.0) A5 = <6.5, inf) \
      0
                              1
                                                      1
                                                                         0
      1
                               1
                                                      1
                                                                         0
      2
                               1
                                                      1
                                                                         0
      3
                               1
                                                      1
                                                                         0
      4
                               1
                                                      1
                                                                         1
         A13 = (-inf, 591.5) A6 = <3.5, inf)
      0
                             1
                                                 1
      1
                             1
                                                 0
      2
                             1
                                                 1
      3
                              0
                                                 1
      4
                              1
                                                 1
      [5 rows x 99 columns]
```

Building a Random Forest model on a prepared dataset by RuleXAI

[21]: from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(random_state=42)

clf.fit(X_train_tranformed, y_train_org)

- [21]: RandomForestClassifier(random_state=42)
- [22]: X_test_transformed = explainer.transform(X_test_org)

Balanced accuracy on training set

- [23]: balanced_accuracy_score(y_train_org,clf.predict(X_train_tranformed))
- [23]: 1.0

Balanced accuracy on test set

[24]: balanced_accuracy_score(y_test_org,clf.predict(X_test_transformed))

[24]: 0.844871794871795

Comparing the results obtained with RandomForest on the preprocessed original set (imputation, dummification, normalization) and on the original set transformed with RuleXAI, it can be seen that these results are similar.

INDEX

С

condition_importances_
 (rulexai.explainer.Explainer attribute), 6
condition_importances_
 (rulexai.explainer.RuleExplainer attribute), 4

Е

explain() (rulexai.explainer.Explainer method), 7
explain() (rulexai.explainer.RuleExplainer method), 4
Explainer (class in rulexai.explainer), 6

F

G

get_rules() (rulexai.explainer.Explainer method), 8 get_rules() (rulexai.explainer.RuleExplainer method), 5 get_rules_covering_example() (rulexai.explainer.Explainer method), 8 get_rules_covering_example() (rulexai.explainer.RuleExplainer method), 5 get_rules_with_basic_conditions() (rulexai.explainer.Explainer method), 8 get_rules_with_basic_conditions() (rulexai.explainer.RuleExplainer method), 5 L local_explainability() (rulexai.explainer.Explainer method), 8 local_explainability()

(rulexai.explainer.RuleExplainer

6

method),

Ρ

plot_importances() (rulexai.explainer.Explainer method), 8

R

RuleExplainer (class in rulexai.explainer), 3

Т