
Theoretical basis of the rule analysis methods implemented  

in the RuleXAI package 

 

Rule definition 

 

The RuleXAI package operates on rule-based representation and is applicable to 

classification, regression and survival tasks. Each rule r forming a rule representation has the 

form: 

IF w1 and w2 and . . . and wn THEN decision 

The premise of a rule is a conjunction of elementary conditions wi ≡ ai ⊙ xi, with xi, being an 

element of the aj domain and ⊙ representing a relation (= for symbolic attributes; <, ≤, >, ≥ 

for ordinal and numerical ones).  

 

In a classification rule the decision part has the form decision = v. The value 𝑣 ∈ 𝑉𝑑 points to 

one of decision classes (concepts) under which the examples are classified. The meaning of 

the rule is as follows: if an example fulfils all conditions specified in the conditional part of 

the rule, then it belongs to the decision class specified in the rule conclusion. An example 

satisfying the conditions specified in the rule premise is stated to be covered by the rule. The 

examples whose labels are the same as the conclusion of r are called positive examples, while 

the others are called negative examples. 

 

In a regression rule the decision attribute is real-valued. Therefore, the decision part of the 

rule has the form 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑣, 𝑣 ∈ 𝑹. The value v can be calculated on the basis of some 

function f (e.g. linear), whose values depend on the set of examples covering the rule r (and 

denoted further as [r]) and values of conditional attributes (e.g. f can be a linear combination 

of conditional attribute values). During the regression rule induction the formula of f is fixed, 

but its parameters must be determined in the rule induction process (for example, see [1]). 

This increases the computational complexity of the rule induction process. However, it turns 

out that good prediction results can be obtained with a simple form of a regression rule r with 

the conclusion 𝑣 ∈ 𝑹, calculated as an average or a median of decision values of examples 

from [r] [2,3]. This form of a rule is used in RuleXAI because it can be very easily interpreted 

by a human. Interpretation of a regression rule is similar to that of classification rule: the 

decision points to the value of the decision attribute for the examples covering the rule. 

 

In survival rules the decision part has the form decision = S([r]). The symbol S([r]) means the 

Kaplan-Meier estimate calculated on the basis of examples from [r]. The survival rule 

meaning is as follows: if an example fulfils all constraints specified in the conditional part of 

the rule, then for its survival time estimation the Kaplan-Meier estimate from the rule 

conclusion is used. 

 



Rule evaluation 

 

To induce a rule, it is necessary to define four values: p, n, P, N. For a classification rule r, P= 

|Pos(r)|, where Pos(r) is a set of all training examples whose decisions are equal to the rule 

decision part. The value of N is calculated similarly: N=|Neg(r)|, where Neg(r) is a set of all 

remaining training examples (that do not belong to Pos(r)). The value of p is the number of 

examples from the positive decision class satisfying the conditions in rule premise (i.e. 

positive examples covered by the induced rule), n is the number of examples from the 

negative class satisfying the conditions in rule premise (i.e. negative examples covered by the 

induced rule), which can be formally stated as follows: 

𝑝 =  |Pos(𝑟)  ∩  [𝑟]|  

𝑛 =  |Neg(𝑟)  ∩  [𝑟]|  

 

In case of regression rules the continuous form of the decision variable should be considered. 

Let us consider a regression rule 𝑟 ≡ 𝜑 → 𝑣, 𝑣 ∈ 𝑹 . The set Pos(r) is the set of those training 

examples whose decision attribute values belong to [𝑣 − 𝛿, 𝑣 + 𝛿], where δ is a standard 

deviation of decision attribute values of all examples from [r] (i.e. examples covering the rule 

r). The Neg(r) set contains all training examples that do not belong to Pos(r). With these 

assumptions, values of p and n are defined by analogy as in the case of the classification rule. 

 

Two measures are typically used in rule-based exploratory analysis: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑝

𝑝+𝑛
 , 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑝

𝑃
 . 

Other measures may also be used, in particular in RuleXAI the C2 measure was used as the 

measure of rule quality in rule induction and elementary condition importance evaluation. The 

C2 measure uses p, n, P, N values defined above and it has the following form: 

𝐶2 = (
𝑁𝑝 − 𝑃𝑛

𝑁(𝑝 + 𝑛)
) (

𝑃 + 𝑝

2𝑝
)  . (1) 

The C2 measure can be viewed as the weighted version of Kappa statistics. During the 

condition evaluation, the quality of the rule – with and without the evaluated condition – is 

calculated. 

 

Importance of elementary conditions 

 

The importance of elementary conditions is considered from the point of view of the precision 

of rules containing them. In the classical approach, the analysis considers the precision of 

rules containing the evaluated conditions and rules not containing them. Validity is not 

assessed from the point of view of statistical significance, therefore the term condition 

significance is not used but importance.  In the definition of indicators designed to assess the 

importance of elementary conditions, a key role is played by the Shapley index [4] which in 

game theory is used to assess the strength of players and coalitions. This index – after some 

modifications – can be used to create indices assessing the importance of sets of elementary 



conditions. Positive values of these indices mean that the evaluated conditions increase the 

accuracy of the rules, while negative values mean that the evaluated conditions are (at least 

partially) redundant. 

 

Let us assume that a decision rule r and a set of elementary conditions 𝐸𝑐(𝑟) =

{𝑤1, 𝑤2, … , 𝑤𝑚} are given. In the standard form, the values of the Shapley index (2) are 

calculated based on information about the average impact of the evaluated elementary 

condition on the precision of rules that are all possible generalizations of the rule r: 

𝜙𝑆(𝑤, 𝑟) = ∑
(𝑚 − |𝑌| − 1)! |𝑌|!

𝑚!
𝑌⊆𝐸𝑐(𝑟)−{𝑤}

[𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑌 ∪ {𝑤}, 𝑟) − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑌, 𝑟)] (2) 

In formula (2), precision(Y,r) denotes the precision of the rule r, whose premise is built only 

from the conditions contained in the set Y. In addition, the following assumption is made: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(∅, 𝑟) = 0, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐸𝑐(𝑟), 𝑟) = 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟). 

Let us denote by RULX the set of all rules pointing to the decision class X. The validity of an 

elementary condition in the set RULX is calculated based on the validity of this condition in all 

rules belonging to RULX, and also based on the validity of this condition in all rules pointing 

to a decision class other than X. The methods implemented in RuleXAI are based on an 

approach in which the evaluation of the importance of the condition w for the decision class X 

is expressed by formula (3):  

𝐺(𝑤, 𝑅𝑈𝐿𝑋) = ∑ (𝜙𝑆(𝑤, 𝑟)  𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑟))

𝑟∈𝑅𝑈𝐿𝑋

 (3) 

According to (3), in the global evaluation of an elementary condition, its contribution to the 

precision of each rule containing it and all generalizations of such a rule is taken into account, 

and the coverage of the rules containing the evaluated condition is also taken into account. 

Coverage rule induction algorithms perform an ongoing evaluation of elementary conditions 

in the growth and pruning phases. This evaluation is usually done by means of a quality 

measure. A natural generalization of formulas (2-3) is therefore to replace the precision 

measure with a quality measure, in this case the C2 measure. This change means that each 

generalization of r will examine the effect of a given condition not only on the precision of 

the rule, but also on its coverage. Formula (2) then takes the form (4), and the evaluation of 

the elementary condition in the rule set is expressed by formula (5): 

𝜙𝐶2𝑆(𝑤, 𝑟) = ∑
(𝑚 − |𝑌| − 1)! |𝑌|!

𝑚!
𝑌⊆𝐸𝑐(𝑟)−{𝑤}

[𝐶2(𝑌 ∪ {𝑤}, 𝑟) − 𝐶2(𝑌, 𝑟)] (4) 

 

𝐺𝐶2(𝑤, 𝑅𝑈𝐿𝑋) = ∑ 𝜙𝐶2𝑆(𝑤, 𝑟)

𝑟∈𝑅𝑈𝐿𝑋

 (5) 

In formula (5), the evaluation of the coverage of rules containing the elementary condition 

being evaluated has been removed, as it is already performed during the determination of the 

value of 𝜙𝐶2𝑆(𝑤, 𝑟). 

Determining the values of the index (2) or (4) for the rule consisting of elementary conditions, 

on the whole set of examples we have to determine the value of the precision measure or C2 

quality measure 2m-1 times, because this is how many generalizations of the rule r we get. 

When the number of elementary conditions is large or the set of examples on the basis of 



which the rule quality is calculated is large, such an operation will be time-consuming. In 

order to reduce the time of calculations connected with determining the values of indices, 

their simplified forms can be presented, consisting only of those components of the sums 

occurring in formulas (2) and (4), which contribute most to the assessment of the validity of 

an elementary condition. The simplified index for elementary condition importance evaluation 

(inspired by the Shapley index) assumes that the most information about the validity of the 

elementary condition is contributed by: 

• base rules, i.e. those containing the elementary condition being evaluated, 

• base rules from which only the elementary condition being evaluated has been 

removed, 

• rules whose premises contain only the elementary condition being evaluated. 

This simplified index is expressed by formulas (6-7):  

𝜙𝑠𝑆(𝑤, 𝑟) =
1

𝑚
[𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟) − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐸𝑐(𝑟) − {𝑤}, 𝑟) + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛({𝑤}, 𝑟)] (6) 

 

𝜙𝑠𝐶2𝑆(𝑤, 𝑟) =
1

𝑚
[𝐶2(𝑟) − 𝐶2(𝐸𝑐(𝑟) − {𝑤}, 𝑟) + 𝐶2({𝑤}, 𝑟)] (7) 

 

It is worth noting that in the case of basic (2) and modified Shapley (4) indices the greatest 

weight is assigned to those components that appear in the formulas defining simplified forms 

of the index (6-7).   

It cannot be proved that the orders of the elementary conditions formed by indices (2) and (6) 

and (4), (7) will be identical. However, one can empirically test whether and to what extent 

these orders are correlated. The correlation of the ordering of the elementary conditions for 

the original and simplified indices is shown in Tables 1 to 3 in the Appendix A below. For 

details on the assessment of the validity of conditions, see the work [5]. 

 

In the RuleXAI package the simplified index expressed by formulas (5) and (7) is used to 

evaluate the elementary conditions for classification tasks. In the case of regression rules, the 

elementary conditions are evaluated similarly, using the C2 measure, which is determined 

taking into account the continuous form of the decision variable. In the case of survival rules, 

the log-rank test was used to assess the elementary condition importance [6]. 

 

In order to validate the approach provided by RuleXAI, a comparison of it and SHAP was 

performed. Such an analysis is reasonable when comparing the attribute rankings generated 

by both methods (SHAP does not automatically generate the attribute value ranges (rule 

elementary conditions) as it is done by RuleXAI). SHAP was chosen as a reference method 

because it is widely recognised and used throughout the community. A Python 

implementation of SHAP was used in the experiments (https://shap-

lrjball.readthedocs.io/en/docs_update/generated/shap.TreeExplainer.html). The analysis 

carried out included training the decision tree model, generating the importance of attributes 

by each method and comparing the three most important attributes selected by each method. 

The results of the analysis for the classification and regression tasks are presented in 

Appendix B in Tables 4 and 5 respectively. 



 

 

References 

 

[1] Quinlan JR. Learning with continuous classes. In: Proceedings of the Australian Joint 

Conference on Artificial Intelligence. Singapore: World Scientific; 1992. p. 343–348. 

 

[2] Fürnkranz J. Separate-and-conquer rule learning. Artificial Intelligence Review. 

1999;13(1):3–54. https://doi.org/10.1023/A:1006524209794. 

 

[3] Sikora M, Skowron A, Wróbel Ł. In: Ramsay A, Agre G, editors. Rule Quality 

Measure-Based Induction of Unordered Sets of Regression Rules. Berlin, Heidelberg: 

Springer Berlin Heidelberg; 2012. p. 162–171. https://doi.org/10.1007/978-3-642-

33185-5_18. 

 

[4] Sikora M. Selected methods for evaluation and pruning of decision rules (Wybrane 

metody oceny i przycinania reguł decyzyjnych). Studia Informatica, 2012;33(3B):5-

331. 

 

[5] Sikora M. Redefinition of decision rules based on the importance of elementary 

conditions evaluation. Fundamenta Informaticae, 2013;123(2):171-197. 

https://doi.org/10.3233/FI-2013-806  

 

[6] Wróbel Ł, Gudyś A, Sikora M. Learning rule sets from survival data. BMC 

Bioinformatics 2017;18:285. https://doi.org/10.1186/s12859-017-1693-x 

 

 

  



Appendix A 

 

 Data set Correlation 

1 autos 0.854 

2 balance-scale 0.918 

3 breast-cancer 1.000 

4 breast-w 0.835 

5 car 0.956 

6 contact-lenses 1.000 

7 credit-a 0.877 

8 echocardiogram 0.821 

9 ecoli 0.813 

10 flag 0.853 

11 glass 0.867 

12 hayes-roth 1.000 

13 heart-c 0.901 

14 heart-statlog 0.937 

15 hepatitis 0.912 

16 horse-colic 0.875 

17 hungarian-heart-disease 0.894 

18 hypothyroid 0.917 

19 ionosphere 0.811 

20 iris 0.944 

21 kdd-synthetic-control 1.000 

22 kr-vs-kp 0.723 

23 labor 1.000 

24 lymph 0.939 

25 mammographic-masses 0.983 

26 mushroom 0.912 

27 primary-tumor 1.000 

28 prnn-synth 1.000 

29 sonar 0.830 

30 soybean 0.867 

31 splice 1.000 

32 tic-tac-toe 0.824 

33 titanic 1.000 

34 vote 1.000 

35 wine 1.000 

36 zoo 1.000 

 Mean 0.918 

 Std. dev. 0.074 

Table 1. Correlation of the ordering of the elementary conditions for the original and 

simplified indices – application to classification task on 36 data sets. 

 

 



 Data set Correlation 

1 auto-mpg 0.841 

2 auto-price 0.852 

3 auto93 0.796 

4 bodyfat 0.825 

5 bolts 0.905 

6 boston-housing 0.740 

7 breasttumor 0.801 

8 cholesterol 0.769 

9 cloud 1.000 

10 concrete 0.782 

11 cpu 0.885 

12 diabetes 1.000 

13 echomonths 0.923 

14 ele-1 1.000 

15 ele-2 1.000 

16 elusage 1.000 

17 fishcatch 0.916 

18 fruitfly 0.937 

19 gascons 0.786 

20 housing 0.773 

21 kidney 1.000 

22 laser 0.874 

23 lowbwt 0.824 

24 machine 0.770 

25 mbagrade 1.000 

26 meta 0.820 

27 methane 0.863 

28 mortgage 0.767 

29 pharynx 0.876 

30 pollution 0.877 

31 pwlinear 0.736 

32 pyrim 0.835 

33 servo 1.000 

34 triazines 0.813 

35 veteran 0.751 

 Mean 0.867 

 Std. dev. 0.088 

Table 2. Correlation of the ordering of the elementary conditions for the original and 

simplified indices – application to regression task on 35 data sets. 

 

  
Data set Correlation 

1 actg320 0.817 

2 BHS 1.000 



3 biecek-o 0.810 

4 BMT-ch 0.911 

5 cancer 0.758 

6 cost 0.835 

7 DLBCL 0.818 

8 echomonths 0.824 

9 follic 1.000 

10 GBSG2 0.886 

11 grace1000 1.000 

12 halibut 0.709 

13 hd 1.000 

14 kidney 1.000 

15 lung 1.000 

16 Melanoma 0.912 

17 mgus 0.939 

18 nursing 0.882 

19 pbc 1.000 

20 pharynx 0.944 

21 Rossi 0.944 

22 stanford 1.000 

23 sTRACE 1.000 

24 toy 0.752 

25 uis 1.000 

26 unemployed 0.933 

27 veteran 1.000 

28 wcgs 0.767 

29 whas1 1.000 

30 whas500 1.000  
Mean 0.915  
Std. dev. 0.093 

Table 3. Correlation of the ordering of the elementary conditions for the original and 

simplified indices – application to survival task on 30 data sets. 

 

 

  



Appendix B 

 

 

 Data set Number of common 

features present in the top 3 

ranking positions 

1 autos 2.17 

2 balance-scale 2.00 

3 breast-cancer 2.00 

4 breast-w 2.50 

5 car 2.00 

6 contact-lenses 2.00 

7 credit-a 1.50 

8 echocardiogram 2.50 

9 ecoli 2.63 

10 flag 2.25 

11 glass 2.33 

12 hayes-roth 3.00 

13 heart-c 2.50 

14 heart-statlog 2.50 

15 hepatitis 1.50 

16 horse-colic 2.00 

17 hungarian-heart-disease 2.00 

18 hypothyroid 2.00 

19 ionosphere 2.50 

20 iris 3.00 

21 kdd-synthetic-control 1.83 

22 kr-vs-kp 2.00 

23 labor 2.00 

24 lymph 2.00 

25 mammographic-masses 3.00 

26 mushroom 1.00 

27 primary-tumor 0.62 

28 prnn-synth 3.00 

29 sonar 1.50 

30 soybean 0.89 

31 splice 2.33 

32 tic-tac-toe 2.00 

33 titanic 2.50 

34 vote 2.00 

35 wine 2.33 

36 zoo 2.57 

 
  

 mean value 2.124 

Table 4. Comparison of the attribute importance rankings generated by the RuleXAI and 

SHAP methods for classification data sets. 



 

 Data set Number of common features 

present in the top 3 ranking 

positions 

1 auto-mpg 3 

2 auto-price 2 

3 auto93 2 

4 bodyfat 2 

5 bolts 2 

6 boston-housing 3 

7 breasttumor 3 

8 cholesterol 3 

9 cloud 3 

10 concrete 3 

11 cpu 2 

12 diabetes 3 

13 echomonths 2 

14 ele-1 3 

15 ele-2 3 

16 elusage 3 

17 fishcatch 2 

18 fruitfly 2 

19 gascons 3 

20 housing 3 

21 kidney 3 

22 laser 2 

23 lowbwt 3 

24 machine 3 

25 mbagrade 3 

26 meta 1 

27 methane 3 

28 mortgage 3 

29 pharynx 3 

30 pollution 3 

31 pwlinear 2 

32 pyrim 2 

33 servo 3 

34 triazines 1 

35 veteran 3 

 
  

 mean value 2.571 

Table 5. Comparison of the attribute importance rankings generated by the RuleXAI and 

SHAP methods for regression data sets. 


